首页> 外文期刊>Formalized Mathematics >Introduction to Stochastic Finance: Random Variables and Arbitrage Theory
【24h】

Introduction to Stochastic Finance: Random Variables and Arbitrage Theory

机译:随机金融概论:随机变量和套利理论

获取原文
       

摘要

Using the Mizar system [ 1 ], [ 5 ], we start to show, that the Call-Option, the Put-Option and the Straddle (more generally defined as in the literature) are random variables ([ 4 ], p. 15), see (Def. 1) and (Def. 2). Next we construct and prove the simple random variables ([ 2 ], p. 14) in (Def. 8). In the third section, we introduce the definition of arbitrage opportunity, see (Def. 12). Next we show, that this definition can be characterized in a different way (Lemma 1.3. in [ 4 ], p. 5), see (17). In our formalization for Lemma 1.3 we make the assumption that ? is a sequence of real numbers (there are only finitely many valued of interest, the values of ? in Rsupd/sup). For the definition of almost sure with probability 1 see p. 6 in [ 2 ]. Last we introduce the risk-neutral probability (Definition 1.4, p. 6 in [ 4 ]), here see (Def. 16). We give an example in real world: Suppose you have some assets like bonds (riskless assets). Then we can fix our price for these bonds with x for today and x · (1 + r) for tomorrow, r is the interest rate. So we simply assume, that in every possible market evolution of tomorrow we have a determinated value. Then every probability measure of ?subfut/subsub1/sub is a risk-neutral measure, see (21). This example shows the existence of some risk-neutral measure. If you find more than one of them, you can determine – with an additional conidition to the probability measures – whether a market model is arbitrage free or not (see Theorem 1.6. in [ 4 ], p. 6.) A short graph for (21): Suppose we have a portfolio with many (in this example infinitely many) assets. For asset d we have the price π(d) for today, and the price π(d) (1 + r) for tomorrow with some interest rate r 0. Let G be a sequence of random variables on ?subfut/subsub1/sub, Borel sets. So you have many functions fsubk/sub : {1, 2, 3, 4}→ R with G(k) = fsubk/sub and fsubk/sub is a random variable of ?subfut/subsub1/sub, Borel sets. For every fsubk/sub we have fsubk/sub(w) = π(k)·(1+r) for w {1, 2, 3, 4}. Today Tomorrow only one scenario { w 21 = { 1 , 2 } w 22 = { 3 , 4 } for all d ∈ ?? holds π ( d ) { f d ( w ) = G ( d ) ( w ) = π ( d ) ? ( 1 + r ) , w ∈ w 21 or w ∈ w 22 , r 0 is the interest rate . Here, every probability measure of ?subfut/subsub1/sub is a risk-neutral measure.
机译:使用Mizar系统[1],[5],我们开始证明看涨期权,看跌期权和跨式期权(在文献中更为笼统地定义)是随机变量([4],第15页) ),请参阅(定义1)和(定义2)。接下来,我们构造并证明(Def。8)中的简单随机变量([2],第14页)。在第三部分中,我们介绍了套利机会的定义,请参阅(第12部分)。接下来,我们表明,可以用不同的方式来表征此定义([4]中的引理1.3,第5页),请参见(17)。在对引理1.3的形式化中,我们假设:是一个实数序列(只有有限多个感兴趣的值,R d 中的?值)。有关概率为1的几乎确定的定义,请参见p。 [2]中的6。最后,我们介绍风险中性概率(定义1.4,[4]中的第6页),请参见(定义16)。我们以现实世界为例:假设您有一些资产,例如债券(无风险资产)。然后我们可以用今天的x和明天的x·(1 + r)固定这些债券的价格,r是利率。因此,我们简单地假设,在明天的每一个可能的市场发展中,我们都有确定的价值。那么,每个 fut 1 的概率度量都是风险中性度量,请参见(21)。此示例显示了某些风险中性措施的存在。如果发现其中一个以上,则可以(通过概率测度的附加条件)确定市场模型是否是无套利的(请参见定理1.6。[4],第6页。) (21):假设我们有一个包含许多(在此示例中为无限多个)资产的投资组合。对于资产d,我们有今天的价格π(d)和明天的价格π(d)(1 + r),利率为r>0。令G为? fut上的随机变量序列 1 ,Borel设置。因此,您有许多函数f k :{1,2,3,4}→R,其中G(k)= f k 和f k 是Borel集的? fut 1 的随机变量。对于每个f k ,对于w {1,2,3,4},我们有f k (w)=π(k)·(1 + r)。今天明天对于所有d∈??仅一种情况{w 21 = {1,2} w 22 = {3,4}保持π(d){f d(w)= G(d)(w)=π(d)? (1 + r),w∈w 21或w∈w 22,r> 0为利率。在这里,每个 fut 1 的概率度量都是风险中性度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号