...
首页> 外文期刊>Fluids >An Oceanic Ultra-Violet Catastrophe, Wave-Particle Duality and a Strongly Nonlinear Concept for Geophysical Turbulence
【24h】

An Oceanic Ultra-Violet Catastrophe, Wave-Particle Duality and a Strongly Nonlinear Concept for Geophysical Turbulence

机译:海洋紫外线突变,波粒对偶和强非线性地球物理湍流概念

获取原文
           

摘要

There is no theoretical underpinning that successfully explains how turbulent mixing is fed by wave breaking associated with nonlinear wave-wave interactions in the background oceanic internal wavefield. We address this conundrum using one-dimensional ray tracing simulations to investigate interactions between high frequency internal waves and inertial oscillations in the extreme scale separated limit known as “Induced Diffusion”. Here, estimates of phase locking are used to define a resonant process (a resonant well) and a non-resonant process that results in stochastic jumps. The small amplitude limit consists of jumps that are small compared to the scale of the resonant well. The ray tracing simulations are used to estimate the first and second moments of a wave packet’s vertical wavenumber as it evolves from an initial condition. These moments are compared with predictions obtained from the diffusive approximation to a self-consistent kinetic equation derived in the ‘Direct Interaction Approximation’. Results indicate that the first and second moments of the two systems evolve in a nearly identical manner when the inertial field has amplitudes an order of magnitude smaller than oceanic values. At realistic (oceanic) amplitudes, though, the second moment estimated from the ray tracing simulations is inhibited. The transition is explained by the stochastic jumps obtaining the characteristic size of the resonant well. We interpret this transition as an adiabatic ‘saturation’ process which changes the nominal background wavefield from supporting no mixing to the point where that background wavefield defines the normalization for oceanic mixing models.
机译:没有理论基础可以成功地解释在背景海洋内部波场中,与非线性波-波相互作用相关的断波如何为湍流混合提供能量。我们使用一维射线追踪模拟解决了这个难题,以研究高频内部波与惯性振荡之间的相互作用,这种极端相互作用被称为“诱导扩散”。在此,锁相估计用于定义共振过程(共振阱)和导致随机跃迁的非共振过程。小幅度限制由与共振井规模相比较小的跳跃组成。光线追踪模拟用于估算波包从初始条件演变而来的垂直波数的第一和第二矩。将这些矩与从“直接相互作用近似”中导出的自洽动力学方程的扩散近似获得的预测进行比较。结果表明,当惯性场的振幅比海洋值小一个数量级时,两个系统的第一力矩和第二力矩以几乎相同的方式发展。但是,在实际(海洋)振幅下,从光线跟踪模拟估计的第二矩会受到抑制。过渡是通过随机跃迁来解释的,从而获得共振井的特征尺寸。我们将这种转变解释为绝热的“饱和”过程,它将名义上的背景波场从不支持混合改变为背景波场定义了海洋混合模型的归一化点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号