...
首页> 外文期刊>Energies >Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins
【24h】

Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

机译:大陆架响应冰川-欧洲海平面变化的甲烷水合物稳定性模型:以加拿大海洋边缘为例

获取原文

摘要

We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH) stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial) and anthropogenic (climate change) forcing. Our models focus on the interval beginning three million years ago (i.e., Late Pliocene-Holocene). They continue through the current interglacial and they are projected to its anticipated natural end. During the current interglacial the gas hydrate stability zone (GHSZ) thickness in each region responded uniquely as a function of changes in water depth and sea bottom temperature influenced by ocean currents. In general, the GHSZ in the deeper parts of the Pacific and Atlantic margins (≥1316 m) thinned primarily due to increased water bottom temperatures. The GHSZ is highly variable in the shallower settings on the same margins (~400–500 m). On the Pacific Margin shallow GH dissociated completely prior to nine thousand years ago but the effects of subsequent sea level rise reestablished a persistent, thin GHSZ. On the Atlantic Margin Scotian Shelf the warm Gulf Stream caused GHSZ to disappear completely, whereas in shallow water depths offshore Labrador the combination of the cool Labrador Current and sea level rise increased the GHSZ. If future ocean bottom temperatures remain constant, these general characteristics will persist until the current interglacial ends. If the sea bottom warms, possibly in response to global climate change, there could be a significant reduction to complete loss of GH stability, especially on the shallow parts of the continental shelf. The interglacial GH thinning rates constrain rates at which carbon can be transferred between the GH reservoir and the atmosphere-ocean system. Marine GH can destabilize much more quickly than sub-permafrost terrestrial GHs and this combined with the immense marine GH reservoir suggests that GH have the potential to affect the climate-ocean system. Our models show that GH stability reacts quickly to water column pressure effects but slowly to sea bottom temperature changes. Therefore it is likely that marine GH destabilization was rapid and progressive in response to the pressure effects of glacial eustatic sea level fall. This suggests against a catastrophic GH auto-cyclic control on glacial-interglacial climate intervals. It is computationally possible but, unfortunately in no way verifiably, to analyze the interactions and impacts that marine GHs had prior to the current interglacial because of uncertainties in temperature and pressure history constraints. Thus we have the capability, but no confidence that we can contribute currently to questions regarding the relationships among climate, glacio-eustatic sea level fluctuations and marine GH stability without improved local temperature and water column histories. We infer that the possibility for a GH control on climate or oceanic cycles is speculative, but qualitatively contrary to our model results.
机译:我们对加拿大大陆架连续的冰河-欧共体周期进行数值模拟,以说明过去,现在和将来的海洋天然气水合物(GH)的稳定性和不稳定性。这些模型表明,海洋GH资源具有动态特征,其形成年龄和资源量取决于海洋-大气系统的动态,因为它对自然(冰川-冰川间)和人为(气候变化)强迫做出了响应。我们的模型着重于三百万年前开始的间隔(即上新世-全新世晚期)。它们在当前的冰期之间继续存在,并且预计将达到其预期的自然终结。在当前的冰川间期,每个区域中的天然气水合物稳定区(GHSZ)厚度响应受洋流影响的水深和海底温度的变化而唯一地响应。通常,由于水底温度升高,太平洋和大西洋边缘(≥1316m)较深部分的GHSZ变薄。在相同边缘(〜400–500 m)的较浅设置中,GHSZ高度可变。在太平洋边缘,距今9000年前,浅层GH完全消失了,但是随后海平面上升的影响又重新建立了持续的薄GHSZ。在大西洋边缘的斯科特陆架上,温暖的墨西哥湾流使GHSZ完全消失,而在拉布拉多近海浅水区,凉爽的拉布拉多洋流和海平面上升共同导致了GHSZ。如果未来的海底温度保持恒定,这些一般特征将持续到当前冰期结束。如果海底变暖(可能是响应全球气候变化),则可能会大大减少GH的稳定性,尤其是在大陆架的浅层部分。冰川间GH稀疏率限制了碳可以在GH储层和大气-海洋系统之间转移的速率。海洋GH的失稳比地下多年冻土的GH稳定快得多,再加上巨大的海洋GH储集层,表明GH有可能影响气候-海洋系统。我们的模型表明,GH稳定性对水柱压力效应反应迅速,但对海底温度变化反应缓慢。因此,海洋GH失稳很可能是迅速而渐进的,以响应于冰河欢乐海平面下降的压力影响。这表明反对在冰川-冰川间气候间隔上进行灾难性的GH自动循环控制。由于温度和压力历史约束的不确定性,有可能进行计算,但不幸的是,无法以任何方式进行验证,以分析海洋GHs在当前冰间期之前的相互作用和影响。因此,我们有能力,但没有信心,我们可以在不改善局部温度和水柱历史的情况下,对气候,冰川-冰川-海平面波动和海洋GH稳定性之间的关系做出贡献。我们推断对气候或海洋周期进行GH控制的可能性是推测性的,但从质量上来说与我们的模型结果相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号