...
首页> 外文期刊>Fluids >Breather Turbulence: Exact Spectral and Stochastic Solutions of the Nonlinear Schr?dinger Equation
【24h】

Breather Turbulence: Exact Spectral and Stochastic Solutions of the Nonlinear Schr?dinger Equation

机译:呼吸湍流:非线性薛定ding方程的精确频谱和随机解

获取原文
   

获取外文期刊封面封底 >>

       

摘要

I address the problem of breather turbulence in ocean waves from the point of view of the exact spectral solutions of the nonlinear Schr?dinger (NLS) equation using two tools of mathematical physics: (1) the inverse scattering transform (IST) for periodic/quasiperiodic boundary conditions (also referred to as finite gap theory (FGT) in the Russian literature) and (2) quasiperiodic Fourier series, both of which enhance the physical and mathematical understanding of complicated nonlinear phenomena in water waves. The basic approach I refer to is nonlinear Fourier analysis (NLFA). The formulation describes wave motion with spectral components consisting of sine waves, Stokes waves and breather packets that nonlinearly interact pair-wise with one another. This contrasts to the simpler picture of standard Fourier analysis in which one linearly superposes sine waves. Breather trains are coherent wave packets that “breath” up and down during their lifetime “cycle” as they propagate, a phenomenon related to Fermi-Pasta-Ulam (FPU) recurrence. The central wave of a breather, when the packet is at its maximum height of the FPU cycle, is often treated as a kind of rogue wave. Breather turbulence occurs when the number of breathers in a measured time series is large, typically several hundred per hour. Because of the prevalence of rogue waves in breather turbulence, I call this exceptional type of sea state a breather sea or rogue sea. Here I provide theoretical tools for a physical and dynamical understanding of the recent results of Osborne et al. (Ocean Dynamics, 2019, 69, pp. 187–219) in which dense breather turbulence was found in experimental surface wave data in Currituck Sound, North Carolina. Quasiperiodic Fourier series are important in the study of ocean waves because they provide a simpler theoretical interpretation and faster numerical implementation of the NLFA, with respect to the IST, particularly with regard to determination of the breather spectrum and their associated phases that are here treated in the so-called nonlinear random phase approximation. The actual material developed here focuses on results necessary for the analysis and interpretation of shipboard/offshore platform radar scans and for airborne lidar and synthetic aperture radar (SAR) measurements.
机译:我使用两种数学数学工具,从非线性薛定ding(NLS)方程的精确频谱解的角度出发,解决了海浪中的通气湍流问题:(1)周期性/逆变换的逆散射变换(IST)拟周期边界条件(在俄罗斯文学中也称为有限间隙理论(FGT))和(2)拟周期傅里叶级数,它们都增强了对水波中复杂非线性现象的物理和数学理解。我指的基本方法是非线性傅里叶分析(NLFA)。该公式描述了波的运动,其频谱分量包括正弦波,斯托克斯波和通气包,它们彼此成对非线性地相互作用。这与标准傅立叶分析的简单图形成了对比,在标准傅立叶分析中,一个线性叠加正弦波。呼吸列车是相干的波包,它们在传播过程中会在其生命周期“周期”中上下呼吸,这种现象与费米-帕斯塔-乌拉姆(FPU)复发有关。当数据包处于FPU周期的最大高度时,通气器的中心波通常被视为流氓波。当所测量的时间序列中的呼吸器数量很大(通常每小时几百次)时,会发生呼吸湍流。由于在呼吸湍流中普遍存在流浪,我将这种特殊类型的海洋状态称为呼吸海或流浪海。在这里,我提供了理论工具,以物理和动态方式了解Osborne等人的最新成果。 (海洋动力学,2019年,第69页,第187-219页),其中在北卡罗来纳州库里塔克桑德的实验表面波数据中发现了密集的通气湍流。准周期傅里叶级数在海浪研究中很重要,因为它们为IST提供了更简单的理论解释和更快速的NLFA数值实现,特别是在确定呼吸频谱及其相关相位方面。所谓的非线性随机相位逼近。这里开发的实际材料侧重于分析和解释船上/海上平台雷达扫描以及机载激光雷达和合成孔径雷达(SAR)测量所必需的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号