...
首页> 外文期刊>Geoscientific Model Development >Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values
【24h】

Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

机译:使用基于过程的模型从站点到大陆范围建模甘蔗产量:模型结构和参数值带来的不确定性

获取原文
           

摘要

Agro-land surface models (agro-LSM) have been developed from the integrationof specific crop processes into large-scale generic land surface models thatallow calculating the spatial distribution and variability of energy, waterand carbon fluxes within the soil–vegetation–atmosphere continuum. Whendeveloping agro-LSM models, particular attention must be given to the effectsof crop phenology and management on the turbulent fluxes exchanged with theatmosphere, and the underlying water and carbon pools. A part of theuncertainty of agro-LSM models is related to their usually large number ofparameters. In this study, we quantify the parameter-values uncertainty inthe simulation of sugarcane biomass production with the agro-LSMORCHIDEE–STICS, using a multi-regional approach with data from sites inAustralia, La Réunion and Brazil. In ORCHIDEE–STICS, two models arechained: STICS, an agronomy model that calculates phenology and management,and ORCHIDEE, a land surface model that calculates biomass and otherecosystem variables forced by STICS phenology. First, the parameters thatdominate the uncertainty of simulated biomass at harvest date are determinedthrough a screening of 67 different parameters of both STICS and ORCHIDEE ona multi-site basis. Secondly, the uncertainty of harvested biomassattributable to those most sensitive parameters is quantified andspecifically attributed to either STICS (phenology, management) or toORCHIDEE (other ecosystem variables including biomass) through distinct MonteCarlo runs. The uncertainty on parameter values is constrained usingobservations by calibrating the model independently at seven sites. In athird step, a sensitivity analysis is carried out by varying the mostsensitive parameters to investigate their effects at continental scale. AMonte Carlo sampling method associated with the calculation of partial rankedcorrelation coefficients is used to quantify the sensitivity of harvestedbiomass to input parameters on a continental scale across the large regionsof intensive sugarcane cultivation in Australia and Brazil. The tenparameters driving most of the uncertainty in the ORCHIDEE–STICS modeledbiomass at the 7 sites are identified by the screening procedure. We foundthat the 10 most sensitive parameters control phenology (maximum rate ofincrease of LAI) and root uptake of water and nitrogen (root profile and rootgrowth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimaltemperature of photosynthesis, optimal carboxylation rate), radiationinterception (extinction coefficient), and transpiration and respiration(stomatal conductance, growth and maintenance respiration coefficients) inORCHIDEE. We find that the optimal carboxylation rate and photosynthesistemperature parameters contribute most to the uncertainty in harvestedbiomass simulations at site scale. The spatial variation of the rankedcorrelation between input parameters and modeled biomass at harvest is wellexplained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters,for Australia and Brazil. This study reveals the spatial and temporalpatterns of uncertainty variability for a highly parameterized agro-LSM andcalls for more systematic uncertainty analyses of such models.
机译:农业土地表面模型(agro-LSM)已经从特定的作物过程集成到大规模的通用土地表面模型中,从而可以计算土壤-植被-大气连续体中能量,水和碳通量的空间分布和变异性。在开发农业LSM模型时,必须特别注意作物物候和管理对与大气交换的湍流以及基础水和碳库的影响。 agro-LSM模型不确定性的一部分与它们通常具有大量参数有关。在这项研究中,我们使用多区域方法对来自澳大利亚,拉留尼翁和巴西站点的数据,采用农业-LSMORCHIDEE-STICS来模拟甘蔗生物量生产中的参数值不确定性。在ORCHIDEE–STICS中,链接了两个模型:STICS(一种用于计算物候和管理的农学模型)和ORCHIDEE(一种用于计算由STICS物候强迫的生物量和其他生态系统变量的地表模型)。首先,在多站点的基础上,通过筛查STICS和ORCHIDEE的67个不同参数来确定主导模拟生物量不确定性的参数。其次,量化了归因于那些最敏感参数的收获生物量的不确定性,并通过不同的蒙特卡洛实验将其归因于STICS(物候,管理)或toORCHIDEE(其他生态系统变量,包括生物量)。通过在七个位置独立地校准模型,通过观察来约束参数值的不确定性。第三步,通过改变最敏感的参数进行敏感性分析,以研究其在大陆范围内的影响。在澳大利亚和巴西的大面积甘蔗集约栽培大区域,使用与局部偏相关系数的计算相关联的蒙特卡洛采样方法来量化收获的生物量对输入参数的敏感性。通过筛选程序确定了驱动这7个地点的ORCHIDEE–STICS模型生物量中大部分不确定性的十个参数。我们发现10个最敏感的参数控制STICS中的物候(LAI的最大增加速率)和水和氮的根吸收(根分布和根生长速率,氮胁迫阈值)以及光合作用(光合作用的最佳温度,最佳羧化速率),辐射拦截(消光系数),以及蒸腾和呼吸(气孔导度,生长和维持呼吸系数)。我们发现最佳的羧化速率和光合作用温度参数对现场规模的收获生物量模拟的不确定性影响最大。降雨和温度驱动因素很好地解释了输入参数与模型生物量在收获时的等级相关性的空间变化,这表明在澳大利亚和巴西,气候导致的模型甘蔗产量对模型参数的敏感性不同。这项研究揭示了高度参数化的agro-LSM的不确定性变异的时空格局,并呼吁对此类模型进行更系统的不确定性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号