首页> 外文期刊>Geoscientific Model Development >ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition
【24h】

ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition

机译:ORCHIMIC(v1.0),一种微生物介导的土壤有机质分解模型

获取原文
       

摘要

The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, in particular in the context of global change. Modeling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. In this study we present a SOM model called ORCHIMIC, which utilizes input data that are consistent with those of global vegetation models. ORCHIMIC simulates the decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while also implicitly accounting for microbes that do not produce extracellular enzymes, i.e., cheaters. ORCHIMIC and two other organic matter decomposition models, CENTURY (based on first-order kinetics and representative of the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM), were calibrated to reproduce the observed respiration fluxes of FOM and SOM from the incubation experiments of Blagodatskaya et al.?(2014). Among the three models, ORCHIMIC was the only one that effectively captured both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also effectively reproduced the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e., a 5?K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5?K warming conditions, ORCHIMIC predicted a 0.002?Ksup?1/sup decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3?% loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1?% due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modeled by the conventional SOC decomposition model (CENTURY), which can not reproduce the priming effect. If temperature increased by 5?K and litter input was doubled, ORCHIMIC predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ considerably from those simulated by conventional SOC decomposition models when microbial dynamics are included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.
机译:在碳循环中,尤其是在全球变化的背景下,土壤微生物在调节土壤有机质(SOM)分解中的作用至关重要。对土壤微生物群落动力学进行建模以模拟其在较大空间尺度上对土壤气态碳(C)排放和氮(N)矿化的影响是一个近期的研究领域,具有改善SOM对全球气候变化响应的预测的潜力。在这项研究中,我们提出了一个称为ORCHIMIC的SOM模型,该模型利用与全球植被模型一致的输入数据。 ORCHIMIC通过明确考虑酶的产生并区分三个不同的微生物功能组来模拟SOM的分解:新鲜有机物(FOM)专家,SOM专家和通才,同时隐式考虑不产生细胞外酶的微生物(即作弊者) 。校准了ORCHIMIC和另外两个有机物分解模型CENTURY(基于一级动力学并代表了当前大多数全球土壤碳模型的结构)和PRIM(通过FOM加速了SOM的分解速率),以重现观察到的呼吸Blagodatskaya等人(2014)的孵育实验得出FOM和SOM的通量。在这三个模型中,ORCHIMIC是唯一能够有效捕获呼吸通量的时间动态和在孵育实验中观察到的启动效应大小的模型。 ORCHIMIC还有效地再现了微生物生物量的时间动态。然后,我们对模型输入数据应用了不同的理想化更改,即温度逐步升高了5?K和/或植物垃圾输入量增加了一倍。在5?K变暖条件下,ORCHIMIC预测C的利用效率将下降0.002?K ?1 (定义为分配给微生物生长的C与分配给生长和呼吸的C之和的比率) SOC损失3%。在双垫料输入的情况下,ORCHIMIC预测微生物生物量将增加一倍,而由于引发效应,SOC储量增加不到1%。 SOC存量的这种有限增加与常规SOC分解模型(CENTURY)建模的SOC存量按比例增加形成对比,后者无法重现启动效应。如果温度增加5?K且垫料输入增加一倍,ORCHIMIC预测SOC的损失几乎与仅升高温度时的SOC相同。这些测试表明,当包括微生物动力学时,SOC储量对变暖和增加输入的响应可能与常规SOC分解模型模拟的响应有很大不同。下一步是将ORCHIMIC模型整合到全球植被模型中,以对代表性地点和未来情景进行模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号