首页> 外文期刊>Geoscience frontiers >On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings
【24h】

On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

机译:关于超高温地壳变质作用:相平衡,微量元素测温,体积组成,热源,时间尺度和构造背景

获取原文
           

摘要

Ultrahigh temperature (UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900?°C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as ‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine?+?quartz, orthopyroxene?+?sillimanite?±?quartz and osumilite in Mg–Al-rich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1) development of a ferric iron activity–composition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions; (2) quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3) more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions; (5) more strongly linking U–Pb geochronological data from zircon and monazite to P–T points or path segments through using Y?+?REE partitioning between accessory and major phases, as well as phase diagrams incorporating Zr and REE; and (6) improved insight into the settings and factors responsible for UHT metamorphism via geodynamic forward models. These models suggest that regional UHT metamorphism is, principally, geodynamically related to subduction, coupled with elevated crustal radiogenic heat generation rates. Graphical abstract Display Omitted Highlights ? KFMASHTO P–T grid and calculated pseudosections for reduced and oxidised bulk compositions. ? Comprehensive appraisal of Zr-in-rutile vs. Ti-in-zircon thermometry. ? Regional UHT metamorphism requires pre-conditioned crust and/or long incubation and/or elevated crustal heat production.
机译:超高温(UHT)变质是区域地壳变质的最热极端形式,温度超过900?C。 UHT地壳变质作用在变质岩记录中已在全球50多个地区得到公认,在区域地壳过程中被视为“正常”。 UHT变质通常是根据富含Mg-Al的岩石成分中的蓝宝石?+?石英,邻辉石?+?硅线石?±?石英和ososlite的诊断矿物组合来识别的,现在通常结合使用基于伪截面的热压法进行内部-一致的热力学数据集和/或Al-in-Orthopyroxene和三元长石热压法。近年来,对区域UHT变质的理解取得了重要进展,包括:(1)开发了蓝宝石的铁铁活性-组成热力学模型,从而可以计算氧化岩成分的相图; (2)通过微量元素测温法对UHT条件进行定量,其中金红石型锆石记录的温度高于锆石中的钛。金红石可能在UHT峰值条件下保持稳定,而锆石可能仅在UHT岩石冷却时才生长。另外,Zr从金红石中扩散出来的程度由与锆石的化学连通控制。 (3)在地球动力学建模研究中更充分地认识和利用地壳的温度相关热特性以及引起变质作用的热源范围; (4)认识到由于部分融化反应消耗的热能,在前一个事件中或在长期事件中较早融化的地壳要比可融化的未融化的地壳具有更大的达到UHT条件的能力; (5)通过使用副相和主相之间的Y?+ REE划分,以及结合Zr和REE的相图,将锆石和独居石的U–Pb年代学数据更牢固地链接到P–T点或路径段。 (6)通过地球动力学正演模型更好地了解了造成UHT变质的环境和因素。这些模型表明,区域性UHT变质作用主要是与俯冲作用在地球动力学上相关,并伴随着地壳放射性热生成速率的提高。图形摘要显示省略的突出显示? KFMASHTO P–T网格和计算的伪截面,用于还原和氧化的散装成分。 ?锆中金和锆石中钛的综合评估。 ?区域UHT变质作用需要预处理的地壳和/或长时间孵育和/或地壳热量增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号