...
首页> 外文期刊>Geochemical Transactions >Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation
【24h】

Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

机译:溶质驱动碳酸钙沉淀的地球物理监测和反应输运模型

获取原文

摘要

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.
机译:溶酶驱动的碳酸钙沉淀是用于隔离二价放射性核素和痕量金属离子的有前途的原位修复方法的基础。还已经提出将其用于岩土工程中的土壤加固应用。监测地下碳酸钙沉淀的发生,空间分布和时间演变,对于评估该技术的性能以及开发工程应用所需的预测模型至关重要。在这项研究中,我们使用天然沉积物和地下水进行了实验室柱实验,以评估地球物理(复合电阻率和地震)感测方法,动态同步加速器X射线计算机断层扫描(micro-CT)和反应性输运模型以跟踪尿素分解的效用,在现场相关条件下驱动碳酸钙沉淀过程。使用TOUGHREACT进行反应性运输建模成功地模拟了尿素水解过程中主要化学成分的变化。即使在实验中观察到相对较低的尿素水解水平,模拟也预测碳酸钙沉淀速率会提高,比基线水平高出3-4倍。反应性运输建模结果,地球物理监测数据和微CT成像与通过地球化学数据验证的反应过程密切相关。特别是,通过电导率测量成功地捕获了通过地球化学模型预测的尿素水解过程中孔隙流体离子强度的增加,并通过地球化学数据进行了证实。该模型和地球化学数据表明尿素水解和碳酸钙沉淀水平较低,这是由于地震P波速度测量和微CT成像的微小变化所证实的。后者提供了稀疏分布的碳酸钙沉淀的直接证据。通过尿素水解过程中通过产生NH4 +促进的离子交换过程被纳入模型,并捕获了主要金属物种的关键变化。电相增加可能是由于离子交换过程改变了矿物/水界面的电荷结构。我们的研究揭示了尿素水解过程中地球物理监测地球化学变化的潜力,以及结合多种方法了解地下复杂生物地球化学过程的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号