首页> 外文期刊>Genes >Therapeutic Targeting of Telomerase
【24h】

Therapeutic Targeting of Telomerase

机译:端粒酶的治疗靶向

获取原文
       

摘要

Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and personalized approaches. Telomerase activation and cell rejuvenation is successfully used in regenerative medicine for tissue engineering and reconstructive surgery. However, there are also a number of pitfalls in the treatment with telomerase activating procedures for the whole organism and for longer periods of time. Extended cell lifespan may accumulate rare genetic and epigenetic aberrations that can contribute to malignant transformation. Therefore, novel vector systems have been developed for a ‘mild’ integration of telomerase into the host genome and loss of the vector in rapidly-proliferating cells. It is currently unclear if this technique can also be used in human beings to treat chronic diseases, such as atherosclerosis.
机译:端粒长度和细胞功能可以通过人类逆转录酶端粒酶(hTERT)得以保留,后者可以从RNA模板合成新的端粒DNA,但通常仅限于需要高增殖能力的细胞,例如干细胞。因此,开发了用于延长短端粒的基于端粒酶的疗法,其中一些已成功地进入临床试验的第一阶段。端粒酶也允许发生肿瘤,所有恶性肿瘤中有90%使用端粒酶获得永生。因此,逆转端粒酶在肿瘤细胞中的上调是治疗癌症的潜在策略。天然和小分子端粒酶抑制剂,免疫治疗方法,寡核苷酸抑制剂和端粒酶指导的基因治疗是有用的治疗策略。端粒酶比任何其他肿瘤标记物更广泛地表达。正常组织中的低表达以及正常干细胞相对于癌细胞中的端粒更长,提供了一定程度的特异性且毒性较低。但是,长期的端粒酶抑制作用可能在需要端粒酶存活的高度增殖细胞中引起负面影响,并且可能干扰端粒非依赖性的生理功能。此外,仅需几个hTERT分子即可克服癌细胞中的衰老,端粒酶抑制作用需要在足够数量的种群倍增中增殖细胞以诱导肿瘤抑制性衰老。这些局限性可以解释许多临床研究中的成功率。尽管进行了广泛的研究,但临床工作中通常仅使用一种疫苗和一种端粒酶拮抗剂。为了完全消除癌细胞的所有亚群,可能需要同时靶向多种机制。已经提出了可能的技术改进,包括开发更特异性的抑制剂,提高疫苗接种方法效力的方法以及个性化方法。端粒酶激活和细胞再生已成功用于组织工程和重建手术的再生医学。但是,对于整个生物体以及更长的时间,端粒酶活化程序的治疗也存在许多陷阱。延长的细胞寿命可能积累罕见的遗传和表观遗传畸变,这些畸变可能有助于恶性转化。因此,已经开发出新颖的载体系统,以将端粒酶“温和”整合到宿主基因组中,并在快速增殖的细胞中损失载体。目前尚不清楚该技术是否也可以用于人类以治疗诸如动脉粥样硬化的慢性疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号