首页> 外文期刊>Galaxies >Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings
【24h】

Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings

机译:利用非绝热宇宙模型和LLR发现确定宇宙常数,引力常数和光速的演化

获取原文
           

摘要

We have shown that the Hubble constant H 0 embodies the information about the evolutionary nature of the cosmological constant Λ , gravitational constant G , and the speed of light c . We have derived expressions for the time evolution of G / c 2 ? ( ≡ K ) and dark energy density ε Λ related to Λ by explicitly incorporating the nonadiabatic nature of the universe in the Friedmann equation. We have found ( d K / d t ) / K ? = ? 1.8 H 0 and, for redshift z , ? ε Λ , z / ε Λ , 0 ? = ? [ 0.4 + 0.6 ( 1 + z ) ? 1.5 ] 2 . Since the two expressions are related, we believe that the time variation of K (and therefore that of G and c ) is manifested as dark energy in cosmological models. When we include the null finding of the lunar laser ranging (LLR) for ( d G / d t ) / G and relax the constraint that c is constant in LLR measurements, we get ( d G / d t ) / G ? = ? 5.4 H 0 and ( d c / d t ) / c ? = ? 1.8 H 0 . Further, when we adapt the standard Λ CDM model for the z dependency of ε Λ rather than it being a constant, we obtain surprisingly good results fitting the SNe Ia redshift z vs distance modulus μ data. An even more significant finding is that the new Λ CDM model, when parameterized with low redshift data set ( z ? ? 0.5 ), yields a significantly better fit to the data sets at high redshifts ( z ? ? 0.5 ) than the standard ΛCDM model. Thus, the new model may be considered robust and reliable enough for predicting distances of radiation emitting extragalactic redshift sources for which luminosity distance measurement may be difficult, unreliable, or no longer possible.
机译:我们已经表明,哈勃常数H 0体现了关于宇宙学常数Λ,引力常数G和光速c的演化性质的信息。我们已经推导了G / c 2?时间演化的表达式。 (≡K)和暗能量密度εΛ与Λ有关,这是通过在Friedmann方程中明确纳入宇宙的非绝热性质而实现的。我们发现(d K / d t)/ K? =? 1.8 H 0,对于红移z,? εΛ,z /εΛ,0? =? [0.4 + 0.6(1 + z)? 1.5] 2。由于这两个表达式是相关的,因此我们认为在宇宙学模型中K的时间变化(以及G和c的时间变化)表现为暗能量。当我们包含(d G / d t)/ G的月球激光测距(LLR)的零发现并放宽c在LLR测量中恒定的约束时,我们得到(d G / d t)/ G? =? 5.4 H 0和(d c / d t)/ c? =? 1.8 H 0。此外,当我们将标准ΛCDM模型用于εΛ的z依赖性而不是常数时,我们得到了令人惊讶的良好结果,拟合了SNe Ia红移z与距离模量μ数据。更为重要的发现是,新的ΛCDM模型在使用低红移数据集(z?<0.5)进行参数设置时,与标准时相比,在高红移(z?> 0.5)时,数据集的拟合度要好得多。 ΛCDM模型。因此,新模型可以被认为足够健壮和可靠,以预测辐射出银河外红移源的辐射距离,对于这些辐射源,光度距离测量可能是困难,不可靠或不再可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号