首页> 外文期刊>Eukaryotic cell >Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides
【24h】

Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides

机译:重建厌氧真核生物单马赛克的糖酵解途径。

获取原文
           

摘要

All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment.
机译:有趣的是,并非所有的真核生物都使用相同的酶进行糖酵解。由于缺乏完整的三羧酸循环,厌氧真核生物面临着每分子葡萄糖提取的ATP分子更少的挑战。这可能迫使厌氧真核生物通过细菌和其他真核生物的侧向基因转移而获得更具ATP效率的替代糖酵解酶,例如焦磷酸果糖6磷酸磷酸转移酶和丙酮酸正磷酸二激酶。对真核生物中这些酶的大多数研究都涉及致病性厌氧菌。 Monocercomonoides 是一种属于真核超群Excavata的氧化单胞菌,是一种非病原性厌氧菌,代表厌氧性糖酵解途径的进化和生态学上独特的采样。我们从先前建立的 Monocercomonoides cDNA文库中对编码糖酵解酶的cDNA进行了测序,并分析了这些酶与其他生物中跨越Eemaryota 主要群体的酶之间的关系。细菌 Archaea 。我们确定,首先, Monocercomonoides 具有糖酵解酶的替代版本:6磷酸果糖磷酸转移酶,丙酮酸激酶和丙酮酸正磷酸二激酶,非辅因子磷酸甘油酸变位酶和果糖双磷酸醛缩酶(II类) ,输入B)。其次,我们找到了证据,证明了Excavata的主要代表是氧单胞菌,动素体,双文凭和副伞形类。我们还发现了涉及原厌氧真核生物糖酵解酶的几种原核生物向真核生物以及真核生物向真核生物的侧向基因转移,这进一步表明,侧向基因转移是该环境中树状体进化途径的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号