首页> 外文期刊>Environmental sciences Europe >Regionalisation of flora elements in field boundaries sensitive to hybridisation with genetically modified oilseed rape
【24h】

Regionalisation of flora elements in field boundaries sensitive to hybridisation with genetically modified oilseed rape

机译:对与转基因油菜杂交产生敏感性的田间界线中植物区系的区域划分

获取原文
           

摘要

Background, aim, and scope Gene flow via pollen dispersal to neighbouring non-genetically modified (GM) and organic fields or to biotopes containing the same crop species and/or their wild relatives are among the most debated potential environmental risks of GM crops. These crosses permit ingression of GM traits and may produce viable progeny. Current GM crop monitoring plans and concepts have not considered this a critical issue. In the present study, we develop a methodology for the regionalisation of the hybridisation risk of GM oilseed rape (OSR) (Brassica napus L.) with respect to related hybridisation partners (both OSR and related species) as well as neighbouring arable fields and biotopes. This methodology should constitute an important component of future spatial GM crop monitoring designs. Materials and methods A vegetation database containing occurrence frequencies of OSR crossing partners in Brandenburg state was analysed, and literature surveys were performed on OSR outcrossing proofs with regard to different wild species, the viability of progeny and the potential establishment of crosses. We aggregated detailed biotope maps for the entire Brandenburg state in order to differentiate the nine main biotope groups relevant as habitats for OSR and hybridising Brassicaceae. We determined the types and areas of biotopes neighbouring all arable fields with an outside buffer of 50?m, and then ascertained whether the biotope composition outside the buffers was significantly different from that of the buffers. We then overlayed our buffering results with an ecoregion map of Brandenburg to upscale our results to larger regions. Results Brassica rapa presented the highest potential for hybridisation, reproduction and persistence in this environment, but Raphanus raphanistrum, Brassica oleracea, Hirschfeldia incana, Sinapis arvensis and Diplotaxis muralis are also significant potential crossing partners for OSR. The highest average frequency of species occurring in biotopes applies to arable lands, settlements and industrial areas, disturbed areas, road verges and gardens, which together cover 84.2?% of the total area and 74.6?% of the neighbouring biotopes. Related species occurring most often in Brandenburg are Descurainia sophia, feral OSR, Sinapis arvensis, Diplotaxis tenuifolia and Diplotaxis muralis. All biotopes relevant to OSR-related species are present in all Brandenburg ecoregions, but there are differences in the proportion of each biotope, especially hedgerows, arable land, gardens and road verges. The Uckermark and Oder valley can be considered slightly more critical. Discussion Hybridisation and persistence of GM OSR depends on (a) the related species’ potential to hybridise and produce viable progeny, (b) the frequency of hybridisation partners at different biotope types, and (c) the frequency of directly neighbouring arable fields with sensitive biotopes. Integration of these factors gives the following rank order of hybridisation risks for different biotopes in the agro-environment: disturbed areas > arable land > road verges > settlements and industrial areas > gardens. Extrapolation of local relevée and biotope results to larger areas such as the Brandenburg state was shown to be feasible, and may also be done nationwide and EU-wide with suitable biotope datasets. Conclusions Cultivation of GM OSR in Brandenburg carries a considerable potential of hybridisation with related species and feral OSR in biotopes neighbouring arable fields. The methodology presented here is suitable to link spatially limited but highly detailed datasets on the occurrence of potential hybridisation partners for GM OSR with regional datasets and to extrapolate hybridisation risks, and therefore could serve as a monitoring instrument. Recommendations and perspectives W
机译:背景,目的和范围基因通过花粉散布到邻近的非转基因(GM)和有机田地或包含相同农作物物种和/或其野生近缘种的生物群落中的基因流是转基因作物中最具争议的潜在环境风险之一。这些杂交允许转基因特性进入,并可能产生后代。当前的转基因作物监测计划和概念尚未将其视为关键问题。在本研究中,我们针对相关杂交伙伴(包括OSR和相关物种)以及邻近的耕地和生物群落,开发了转基因油菜(OSR)(Brassica napus L.)杂交风险区域化的方法。该方法应构成未来空间转基因作物监测设计的重要组成部分。材料和方法分析了包含勃兰登堡州OSR杂交伙伴发生频率的植被数据库,并就不同野生物种,后代的生存力和杂交的潜在可能性对OSR杂交证明进行了文献调查。我们汇总了整个勃兰登堡州的详细生物群落图,以便区分与OSR和杂交十字花科的栖息地相关的9个主要生物群落。我们确定了外部缓冲区为50?m的所有耕地附近的生物群落的类型和面积,然后确定缓冲器外部的生物群落组成是否与缓冲菌明显不同。然后,我们将缓冲结果覆盖在勃兰登堡州的生态区域地图上,以将结果扩展到更大的区域。结果在这种环境下,小白菜表现出最高的杂交,繁殖和持久性潜力,但Raphanus raphanistrum,小白菜,Hirschfeldia incana,Sinapis arvensis和Diplotaxis muralis也是OSR的重要潜在杂交伙伴。在生物群落中出现的物种的平均频率最高,适用于耕地,居民区和工业区,受干扰的地区,道路边缘和花园,它们合计占总生物群落面积的84.2%,占邻近生物群落的74.6%。在勃兰登堡州,最常见的相关物种是麦地拉克线虫,野生OSR,西纳皮鱼,Diplotaxis tenuifolia和Diplotaxis muralis。在勃兰登堡州的所有生态区中都存在与OSR相关物种有关的所有生物群落,但是每种生物群落的比例都有差异,特别是树篱,耕地,花园和道路边缘。乌克马克(Uckermark)和奥德河谷(Oder valley)可以认为更为关键。讨论GM OSR的杂交和持久性取决于(a)相关物种杂交并产生可行后代的潜力,(b)不同生物群落类型的杂交伴侣的频率,以及(c)具有敏感性的直接相邻耕地的频率生物群落。这些因素的综合给出了针对农业环境中不同生物群落的杂交风险的以下等级顺序:受干扰的区域>耕地>道路边缘>定居点和工业区>花园。事实证明,将当地相关信息和生物群落结果外推到勃兰登堡州等较大地区是可行的,并且也可以在全国和欧盟范围内使用合适的生物群落数据集进行推断。结论在勃兰登堡州种植转基因OSR具有在相关耕地附近生物群落中与相关物种和野生OSR杂交的巨大潜力。本文介绍的方法适用于将关于GM OSR的潜在杂交伙伴发生的空间有限但高度详细的数据集与区域数据集联系起来,并推断杂交风险,因此可以用作监测工具。建议和观点W

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号