首页> 外文期刊>Environmental Research Letters >Global change accelerates carbon assimilation by a wetland ecosystem engineer
【24h】

Global change accelerates carbon assimilation by a wetland ecosystem engineer

机译:全球变化加速了湿地生态系统工程师的碳同化

获取原文
           

摘要

The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m?2 yr?1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66?±?0.05 kg C m?2 yr?1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24?±?0.08 kg C m?2 yr?1. We used biomass data to calculate NPP, and determined that it represented 44%–60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread and greater carbon storage belowground.
机译:响应于大气中二氧化碳(CO2)浓度升高,氮(N)富集以及新物种的入侵,沿海湿地的初级生产力正在发生巨大变化,这可能会改变其生态系统服务和抵御海平面上升的能力。为了确定这些相互作用的全球变化因素将如何影响沿海湿地生产力,我们对北半球的生长季节碳同化量(≈总初级生产力,或GPP)和保留在北部生物体生物量中的碳(≈净初级生产力,或NPP)进行了量化在四种处理条件下,澳大利亚芦苇(普通芦苇)入侵了美国中大西洋盐沼:两个水平的CO2(环境和+300 ppm)与两个水平的N交叉(0和25 g N添加m?2 yr?1)。对于GPP,我们使用来自开顶舱室实地研究的经验数据,在模拟模型中结合了对冠层结构和叶片水平光合作用的描述。在环境二氧化碳和低氮负荷下(即对照),我们确定在典型的芦苇林密度下,GPP为1.66≤±0.05 kg C m?2yr≤1。单独地,升高的CO2和N富集分别使GPP增加44%和60%。氮富集的变化主要来自生长季节早期和后期的刺激到碳同化,而二氧化碳的变化来自生长早期和中期的刺激。结合起来,二氧化碳和氮的富集比对照提高了GPP 95%,产生了3.24±±0.08 kg C m?2 yr?1。我们使用生物量数据来计算NPP,并确定其代表GPP的44%–60%,与对照相比,全球变化条件降低了碳保留。我们的结果表明,芦苇在富营养化盐沼中的入侵在一定程度上是由扩展的物候驱动的,其产生的NPP比天然沼泽大3.1倍。此外,我们可以预期二氧化碳浓度的升高将在整个生长期增加芦苇的生产力,其潜在影响包括加速扩散和增加地下碳储量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号