...
首页> 外文期刊>Energy research journal >Performance Assessment of Solar Chimneys: Part 2 – Impacts of Slenderness Value and Collector Slope on Power Output
【24h】

Performance Assessment of Solar Chimneys: Part 2 – Impacts of Slenderness Value and Collector Slope on Power Output

机译:太阳烟囱的性能评估:第2部分–细长度值和集热器斜率对功率输出的影响

获取原文
           

摘要

In the previous part, impacts of chimney height thus pressure difference on the power output of solar chimneys have been numerically evaluated. Within the scope of this research, slenderness and slope of collector are analysed in terms of their potential influence on average velocity of air at the chimney inlet. The analyses are based on a commercial and reliable CFD software ANSYS FLUENT. Chimney height is considered to be 100 m in the research and the chimney diameter is varied through a dimensionless parameter (β). Basically, β is defined as inverse slenderness and its value of 0.1 corresponds to a chimney diameter of 10 m as expected. Average velocity of air at the chimney inlet is numerically assessed for the β values in the range of 0.1-0.5. Collector slope is also investigated in the analyses through a dimensionless parameter (δ). The term δ is defined as the ratio of inlet height of collector to the collector height at the centre. Similarly, average velocity of air at the chimney inlet is determined for the δ values in the range of 0.2-1.0. The analyses are conducted for a constant solar intensity of 200 W/m 2 . The chimney height at the centre is taken to be 4 m in the slenderness analyses and 10 m in the collector slope assessments. The height of collector inlet is constant and 1 m in the slenderness research. On the other hand, it is varied from 2 to 10 m in the collector slope analyses. The results reveal that the velocity figures exponentially decrease from 15.93 to 11.85 m/s when the β value rises from 0.1 to 0.5. On the contrary, velocity figures increase with increasing δ value, the enhancement is determined to be about 23%.
机译:在前面的部分中,已经通过数值评估了烟囱高度的影响,因此压力差对太阳能烟囱的功率输出产生了影响。在本研究的范围内,分析了集热器的细长度和斜率,它们对烟囱入口处空气平均速度的潜在影响。这些分析基于商业和可靠的CFD软件ANSYS FLUENT。该研究认为烟囱高度为100 m,并且烟囱直径通过无量纲参数(β)进行变化。基本上,β定义为反向细长,其值0.1对应于预期的10 m烟囱直径。数值估算烟囱入口处的平均空气流速,使其β值在0.1-0.5范围内。在分析中,还通过无量纲参数(δ)研究集电极斜率。术语δ定义为收集器的入口高度与中心处的收集器高度之比。同样,确定烟囱入口处的平均空气速度,其δ值在0.2-1.0范围内。对于200 W / m 2的恒定太阳强度进行分析。在细长分析中,将烟囱中心的高度设为4 m,在收集器坡度评估中,烟囱的高度设为10 m。在细长研究中,集热器入口的高度恒定且为1 m。另一方面,在收集器斜率分析中它从2到10 m不等。结果表明,当β值从0.1上升到0.5时,速度图形从15.93下降到11.85 m / s。相反,速度图随δ值的增加而增加,确定的增强约为23%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号