首页> 外文期刊>eLife journal >Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
【24h】

Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

机译:轴突张力通过控制轴突轴拉链来调节絮凝/除胶

获取原文
获取外文期刊封面目录资料

摘要

As an animal develops, neurons within the nervous system connect with one another to form complex networks. Each neuron has a long cable-like protrusion known as an axon that establishes connections with other neurons. The axon has a structure called the growth cone at its tip, which navigates toward its target in response to signals produced by the surrounding tissues. Newly growing axons may bundle together or with previously grown axons, which helps them to move along a common path. Individual axons can later detach from the bundle to reach their specific target. It is generally thought that the growth cone controls axon bundling by latching on to the shaft of a neighboring axon and then moving along it. However, this viewpoint does not take into account possible dynamic adjustments in the adhesion of the shafts behind the growth cone. ?mít, Fouquet et al. have now grown neural explants taken from the nasal tissue of mouse embryos in the laboratory and used video microscopy to record how the axons grew. The growing axons formed progressively larger bundles without direct involvement from the growth cones. Instead, the shafts of the axons stuck together in a way that resembles fastening a zipper. ?mít, Fouquet et al. manipulated the ‘axon zippers’ and observed that zippering arises from a competition between two forces the contact force that causes two axons to adhere to each other (which favors zippering) and the mechanical tension that arises from internal or external pulls on the axon (which favors unzippering). More research is now needed to directly observe zippering in developing animals in order to understand how it helps the nervous system to assemble.
机译:随着动物的成长,神经系统内的神经元相互连接以形成复杂的网络。每个神经元都有一个长的电缆状突起,称为轴突,可与其他神经元建立连接。轴突在其尖端处具有称为生长锥的结构,该结构响应于周围组织产生的信号而向其目标导航。新生长的轴突可以捆绑在一起,也可以与先前生长的轴突捆绑在一起,这有助于它们沿着共同的路径运动。各个轴突可以稍后从束中分离出来以达到其特定目标。通常认为,生长锥通过闩锁在相邻轴突的轴上然后沿轴移动来控制轴突捆绑。但是,这种观点没有考虑到生长锥后面的轴的附着力的可能的动态调节。 ?,Fouquet等人。现在已经在实验室中从小鼠胚胎的鼻腔组织中提取出神经外植体,并使用视频显微镜记录了轴突的生长方式。生长中的轴突逐渐形成更大的束,而没有生长锥的直接参与。相反,轴突的轴以类似于紧固拉链的方式粘在一起。 ?,Fouquet等人。操纵“轴突拉链”并观察到,拉链起因于两个力之间的竞争,导致两个轴突彼此粘附的接触力(有利于拉链)以及由轴突的内部或外部拉力产生的机械张力(有利于解压缩)。现在需要更多的研究来直接观察正在发育的动物中的拉链,以了解它如何帮助神经系统组装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号