...
首页> 外文期刊>eLife journal >Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis
【24h】

Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis

机译:鉴定引导拟南芥中从头DNA甲基化的24 nt siRNA的Pol IV和RDR2依赖性前体

获取原文
           

摘要

Genes contain instructions for processes in cells and therefore their activities must be carefully controlled. The addition of small chemical tags called methyl groups to DNA is one of the many ways by which cells can influence gene activity. These methyl groups can silence genes by altering the DNA so that is more tightly packed within the nucleus of the cell. Virus genes and mobile sections of DNA called transposable elements (sometimes known as jumping genes) are also silenced by DNA methylation to keep them from doing harm. In plants, methyl groups can be attached to DNA by proteins that are guided to the DNA by molecules called short interfering ribonucleic acids (or siRNAs for short). Each siRNA is made of a chain of 24 building blocks called nucleotides and is able to bind to matching RNA molecules that are attached to the target DNA. The siRNAs are made from longer RNA molecules in a process that involves trimming by an enzyme called DCL3. However, it is not clear how long these “precursor” molecules are before DCL3 cuts them down to size. Here, Blevins, Podicheti et al. studied how siRNAs are made in a plant called Arabidopsis thaliana. The experiments show that RNAs containing around 26-45 nucleotides accumulate in cells that lack DCL3 and these cells are unable to make 24 nucleotide long siRNAs. Furthermore, the purified DCL3 enzyme can cut these precursor RNAs to make the siRNAs. Because the precursors are relatively short, the experiments suggest that DCL3 only cuts each precursor RNA once when making siRNAs. Blevins, Podicheti et al. also show that the siRNA precursors are made by a partnership of two RNA synthesizing enzymes. Therefore, a challenge for the future will be to understand exactly how they work together.
机译:基因包含细胞中过程的指示,因此必须仔细控制其活动。在DNA上添加称为甲基的小型化学标签,是细胞影响基因活性的多种方式之一。这些甲基可以通过改变DNA使基因沉默,从而使DNA更紧密地堆积在细胞核内。病毒基因和DNA的可移动部分(称为转座因子)(有时称为跳跃基因)也被DNA甲基化沉默,以防止其造成伤害。在植物中,甲基可以通过被短干扰核糖核酸(或简称siRNA)的分子引导至DNA的蛋白质与DNA连接。每个siRNA由24个称为核苷酸的构件组成,可与与靶DNA相连的匹配RNA分子结合。 siRNA由较长的RNA分子组成,其过程涉及被称为DCL3的酶修剪。但是,尚不清楚这些“前体”分子在DCL3将其切成小尺寸之前会持续多长时间。在这里,Blevins,Podicheti等。研究了在拟南芥中如何制造siRNA。实验表明,缺少DCL3的细胞中会积聚约26-45个核苷酸的RNA,这些细胞无法产生24个核苷酸长的siRNA。此外,纯化的DCL3酶可以切割这些前体RNA,从而制成siRNA。由于前体相对较短,因此实验表明DCL3在制备siRNA时仅切割每个前体RNA一次。 Blevins,Podicheti等。还表明siRNA前体是由两种RNA合成酶共同作用制得的。因此,未来的挑战将是准确地了解它们如何协同工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号