...
首页> 外文期刊>eLife journal >Dynein–Dynactin–NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble
【24h】

Dynein–Dynactin–NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

机译:Dynein–Dynactin–NuMA簇产生多臂合奏的皮层纺锤体牵引力

获取原文

摘要

Almost every time a cell divides, it must share copies of its genetic material between two new daughter cells. A large molecular machine called the mitotic spindle makes this happen. The spindle is made of protein filaments known as microtubules that radiate out from two points at opposite ends of the cell. Some of these filaments attach to the genetic material in the center of the cell; some extend in the other direction and anchor the spindle to the cell membrane. The anchoring filaments – also known as astral microtubules – can position the mitotic spindle, which controls whether the cell splits straight down the middle (to give two identically sized cells) or off-center (which gives cells of different sizes). The force required to move the spindle comes from complexes of proteins under the cell membrane that contain a molecular motor called dynein, its partner dynactin, and three other proteins – including one called NuMA. The astral microtubules interact with this force-generating machinery, but it was unclear how these proteins are arranged at the membrane. One way to explore interactions in a protein complex is to use a light-induced reconstitution system. This technique involves molecules that will bind together whenever a light shines on them. Fusing these molecules with different proteins means that experimenters can control exactly where, and when, those proteins interact. Okumura et al. have now used a light-induced reconstitution system to understand how the force-generating machinery positions the spindle in human cells. One of the system’s molecules was fused to a protein located at the cell membrane; the other was fused to either the dynein motor or NuMA protein. Using light to move dynein around on the membrane did not move the spindle. Yet, changing the position of NuMA, by moving the light, was enough to rotate the spindle inside the cell. Understanding how these complexes of proteins work increases our understanding of how cells divide. Using the light-induced system to move the spindle could also reveal more about the role of symmetric and asymmetric cell division in organizing tissues. In particular, being able to manipulate the position and size of daughter cells will provide insight into how cell division shapes and maintains tissues during animal development.
机译:几乎每一次细胞分裂,它都必须在两个新的子细胞之间共享其遗传物质的副本。称为有丝分裂纺锤体的大型分子机器使这种情况发生。纺锤体由被称为微管的蛋白质细丝制成,这些细丝从细胞相对两端的两个点放射出。这些细丝中的一些附着在细胞中心的遗传物质上。一些沿另一方向延伸并将纺锤体锚定在细胞膜上。锚定细丝(也称为星状微管)可以定位有丝分裂纺锤体,以控制细胞是沿着中间直向分裂(产生两个大小相同的细胞)还是偏离中心(分裂出不同大小的细胞)。移动纺锤所需的力来自细胞膜下的蛋白质复合物,该蛋白质复合物包含一种称为动力蛋白,其伴侣动力蛋白以及一种其他三种蛋白质的分子运动,其中一种叫做NuMA。星状微管与这种力产生机制相互作用,但是尚不清楚这些蛋白质如何在膜上排列。探索蛋白质复合物中相互作用的一种方法是使用光诱导的重建系统。该技术涉及的分子将在光线照射时将它们结合在一起。将这些分子与不同的蛋白质融合在一起,意味着实验者可以精确地控制这些蛋白质在何时何地相互作用。奥村等。现在已经使用光诱导重建系统来了解力产生机构如何将纺锤放置在人体细胞中。该系统的一个分子融合到位于细胞膜上的蛋白质上。另一个与动力蛋白或NuMA蛋白融合。用光在膜上移动动力蛋白并不能移动心轴。但是,通过移动灯光来更改NuMA的位置足以旋转单元内部的主轴。了解蛋白质的这些复合物是如何工作的,可以加深我们对细胞分裂的了解。使用光诱导系统移动纺锤体也可以揭示更多有关对称和不对称细胞分裂在组织组织中的作用。尤其是,能够操纵子代细胞的位置和大小将有助于深入了解动物发育过程中细胞分裂如何塑造和维持组织。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号