...
首页> 外文期刊>Electronic Journal Of Combinatorics >Power of $k$ Choices and Rainbow Spanning Trees in Random Graphs
【24h】

Power of $k$ Choices and Rainbow Spanning Trees in Random Graphs

机译:随机图中$ k $选项和Rainbow生成树的功能

获取原文

摘要

We consider the Erd?s-Rényi random graph process, which is a stochastic process that starts with $n$ vertices and no edges, and at each step adds one new edge chosen uniformly at random from the set of missing edges. Let $mathcal{G}(n,m)$ be a graph with $m$ edges obtained after $m$ steps of this process. Each edge $e_i$ ($i=1,2,ldots, m$) of $mathcal{G}(n,m)$ independently chooses precisely $k inmathbb{N}$ colours, uniformly at random, from a given set of $n-1$ colours (one may view $e_i$ as a multi-edge). We stop the process prematurely at time $M$ when the following two events hold: $mathcal{G}(n,M)$ is connected and every colour occurs at least once ($M={n choose 2}$ if some colour does not occur before all edges are present; however, this does not happen asymptotically almost surely). The question addressed in this paper is whether $mathcal{G}(n,M)$ has a rainbow spanning tree (that is, multicoloured tree on $n$ vertices). Clearly, both properties are necessary for the desired tree to exist.
机译:我们考虑Erd?s-Rényi随机图过程,它是一个随机过程,从$ n $个顶点开始,没有边,并且在每个步骤中都会添加一个新的边,这些边是从缺失边集中随机选择的。令$ mathcal {G}(n,m)$是在此过程的$ m $个步骤之后获得的$ m $个边的图形。 $ mathcal {G}(n,m)$的每个边$ e_i $($ i = 1,2, ldots,m $)独立地精确地选择$ k in mathbb {N} $的颜色,来自给定的一组$ n-1 $颜色(一个人可能将$ e_i $视为多边)。当以下两个事件成立时,我们会在时间$ M $过早停止该过程:$ mathcal {G}(n,M)$已连接,并且每种颜色至少发生一次($ M = {n choose 2} $在出现所有边缘之前不会出现一些颜色;但是,这几乎不会肯定地渐近发生)。本文解决的问题是$ mathcal {G}(n,M)$是否具有彩虹生成树(即$ n $顶点上的五彩树)。显然,这两种属性对于所需的树都必须是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号