首页> 外文期刊>Electronic Colloquium on Computational Complexity >Characterizing Propositional Proofs as Non-Commutative Formulas
【24h】

Characterizing Propositional Proofs as Non-Commutative Formulas

机译:将命题证明定性为非交换公式

获取原文
           

摘要

Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in proof complexity, and among a handful of fundamental hardness questions in complexity theory by and large. Non-commutative arithmetic formulas, on the other hand, constitute a quite weak computational model, for which exponential-size lower bounds were shown already back in 1991 by Nisan [STOC 1991], using a particularly transparent argument.In this work we show that Frege lower bounds in fact follow from corresponding size lower bounds on non-commutative formulas computing certain polynomials (and that such lower bounds on non-commutative formulas must exist, unless NP=coNP). More precisely, we demonstrate a natural association between tautologies T to non-commutative polynomials p , such that: (*) if T has a polynomial-size Frege proof then p has a polynomial-size non-commutative arithmetic formula; and conversely, when T is a DNF, if p has a polynomial-size non-commutative arithmetic formula over G F (2) then T has a Frege proof of quasi-polynomial size.The argument is a characterization of Frege proofs as non-commutative formulas: we show that the Frege system is (quasi-) polynomially equivalent to a non-commutative Ideal Proof System (IPS), following the recent work of Grochow and Pitassi [FOCS 2014] that introduced a propositional proof system in which proofs are arithmetic circuits, and the work in [Tza11] that considered adding the commutator as an axiom in algebraic propositional proof systems. This also gives a characterization of propositional Frege proofs in terms of (non-commutative) arithmetic formulas that is tighter than (the formula version of IPS) in Grochow and Pitassi [FOCS 2014].
机译:每个布尔重言式都具有简短的命题演算证明吗?命题演算(即弗雷格)证明是从一组公理开始并使用一组固定的声音推导规则推导新布尔公式的证明。在Frege证明上建立任何超多项式大小的下限(就证明的公式的大小而言)是证明复杂性的一个主要开放问题,并且在复杂性理论中很少有一些基本的硬度问题。另一方面,非交换算术公式构成了一个相当弱的计算模型,尼桑早在1991年就用指数方法显示了指数大小的下界[STOC 1991]。在这项工作中,我们证明了实际上,弗雷格下界是从计算某些多项式的非可交换公式上的相应大小下界得出的(除非NP = coNP,否则必须存在非可交换公式上的下界)。更准确地说,我们证明了重言式T与非交换多项式p之间的自然联系,使得:(*)如果T具有多项式大小的Frege证明,则p具有多项式大小的非交换算术公式;反之,当T为DNF时,如果p在GF(2)上具有多项式大小的非交换算术公式,则T具有拟多项式大小的Frege证明。公式:在Grochow和Pitassi [FOCS 2014]的最新工作引入了证明是算术的命题证明系统之后,我们证明了Frege系统在多项式上等同于非交换理想证明系统(IPS)。电路,以及[Tza11]中的工作,其中考虑将换向器添加为代数命题证明系统的公理。这也用(非可交换的)算术公式比在Grochow和Pitassi中更精确的(IPS的公式版本)对命题性Frege证明进行了表征[FOCS 2014]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号