首页> 外文期刊>Electronic Colloquium on Computational Complexity >Bridging between 0/1 and Linear Programming via Random Walks
【24h】

Bridging between 0/1 and Linear Programming via Random Walks

机译:通过随机游走在0/1和线性编程之间进行桥接

获取原文
           

摘要

Under the Strong Exponential Time Hypothesis, an integer linear program with n Boolean-valued variables and m equations cannot be solved in c n time for any constant c 2 . If the domain of the variables is relaxed to [0 1 ] , the associated linear program can of course be solved in polynomial time. In this work, we give a natural algorithmic bridging between these extremes of 0 - 1 and linear programming. Specifically, for any subset (finite union of intervals) E [ 0 1 ] containing 0 1 , we give a random-walk based algorithm with runtime O E ((2 ? measure ( E ) ) n poly ( n m )) that finds a solution in E n to any n -variable linear program with m constraints that is feasible over 0 1 n . Note that as E expands from 0 1 to [0 1 ] , the runtime improves smoothly from 2 n to polynomial. Taking E = [ 0 1 k ) ( 1 ? 1 k 1 ] in our result yields as a corollary a randomized (2 ? 2 k ) n poly ( n ) time algorithm for k -SAT, matching the best known runtime for larger k . While our approach has some high level resemblance to Sch"{o}ning's beautiful algorithm, our general algorithm is based on a more sophisticated random walk that incorporates several new ingredients, such as a multiplicative potential to measure progress, a judicious choice of starting distribution, and a time varying distribution for the evolution of the random walk that is itself computed via an LP at each step (a solution to which is guaranteed based on the minimax theorem). Plugging the LP algorithm into our earlier polymorphic framework yields fast exponential algorithms for any CSP (like k -SAT, 1 -in- 3 -SAT, NAE k -SAT) that admit so-called ``threshold partial polymorphisms.
机译:在强指数时间假设下,对于任何常数c 2,都无法在c n时间内求解具有n个布尔值变量和m个方程的整数线性程序。如果将变量的域放宽到[0 1],则当然可以在多项式时间内求解关联的线性程序。在这项工作中,我们给出了介于0-1和线性编程之间的自然算法桥接。具体来说,对于包含0 1的任何子集(间隔的有限并集)E [0 1],我们给出了一种基于随机游走的算法,该算法具有运行时间OE((2?measure(E))n poly(nm)),可以找到一个解决方案在E n中到任何具有m个约束的n变量线性程序,在0 1 n上都是可行的。注意,随着E从0 1扩展到[0 1],运行时间从2 n平稳地提高到多项式。在结果中取E = [0 1 k)(1?1 k 1)得出k -SAT的随机(2?2 k)n poly(n)时间算法作为推论,与较大k的最佳运行时间匹配虽然我们的方法与Schönning的漂亮算法在某种程度上有相似之处,但我们的通用算法是基于更复杂的随机游走,它结合了几种新成分,例如可用来衡量进度的可乘性,这是明智的选择。初始分布,以及随机游动演化的时变分布,该过程本身是通过LP在每个步骤上计算出来的(基于最小极大定理,可以保证对它的解决方案)将LP算法插入我们先前的多态框架可以快速生成允许所谓的``阈值部分多态性''的任何CSP(例如k -SAT,1 -in- 3 -SAT,NAE k -SAT)的指数算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号