首页> 外文期刊>Electronic Colloquium on Computational Complexity >ETH-Hardness of Approximating 2-CSPs and Directed Steiner Network
【24h】

ETH-Hardness of Approximating 2-CSPs and Directed Steiner Network

机译:近似2-CSP的ETH-Hardness和定向Steiner网络

获取原文
           

摘要

We study the 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows: given a constraint graph G = ( V E ) , an alphabet set and, for each edge u v E , a constraint C u v , the goal is to find an assignment : V that satisfies as many constraints as possible, where a constraint C u v is said to be satisfied by if ( ( u ) ( v )) C u v .While the approximability of 2-CSPs is quite well understood when the alphabet size is constant, many problems are still open when becomes super constant. One open problem that has received significant attention in the literature is whether it is hard to approximate 2-CSPs to within a polynomial factor of both and V (i.e. ( V ) (1) factor). As a special case of what is now referred to as the Sliding Scale Conjecture, Bellare et al. (STOC, 1993) suggested that the answer to this question might be positive. Alas, despite many efforts by researchers to resolve this conjecture, it still remains open to this day.In this work, we separate between V and and ask a closely related but weaker question: is it hard to approximate 2-CSPs to within a polynomial factor of V (but while may be super-polynomial in V )? Assuming the exponential time hypothesis (ETH), we answer this question positively. Specifically, we show that, unless ETH fails, no polynomial time algorithm can approximate 2-CSPs to within a factor of V 1 ? 1 ( log V ) 1 2 ? for every 0" 0 . Note that our ratio is not only polynomial but also almost linear. This is almost optimal since a trivial algorithm yields an O ( V ) -approximation for 2-CSPs.Thanks to a known reduction from 2-CSPs to the Directed Steiner Network (DSN) problem (aka Directed Steiner Forest), our result implies an inapproximability result for the latter with polynomial ratio in terms of the number of demand pairs. Specifically, assuming ETH, no polynomial time algorithm can approximate DSN to within a factor of k 1 4 ? o (1) where k is the number of demand pairs. The ratio is roughly the square root of the best known approximation ratio achieved by polynomial time algorithms due to Chekuri et al. (TALG, 2011) and Feldman et al. (JCSS, 2012), which yield O ( k 1 2+ ) -approximation for every constant 0" 0 .Additionally, if we assume a stronger assumption that there exists 0" 0 such that no subexponential time algorithm can distinguish a satisfiable 3-CNF formula from one which is not even (1 ? ) -satisfiable (aka Gap-ETH), then, for 2-CSPs, our reduction not only rules out polynomial time (i.e. ( V ) O (1) time) algorithms, but also fixed parameter tractable (FPT) algorithms parameterized by the number of variables V . These are algorithms with running time t ( V ) ( V ) O (1) where t can be any function. Similar improvements also apply for DSN parameterized by the number of demand pairs k .
机译:我们研究了二元约束满足问题(2-CSP),可以这样表示:给定一个约束图G =(VE),一个字母集,并且对于每个边uv E,一个约束C uv,目标是找到一个赋值:V满足尽可能多的约束,其中if((u)(v))C uv满足约束C uv。虽然2-CSP的近似性在什么时候得到了很好的理解字母的大小是恒定的,当变得超恒定时,许多问题仍然存在。在文献中受到广泛关注的一个开放问题是,是否很难将2-CSP近似在多项式因子V和(即(V)(1)因子)内。作为现在被称为滑尺猜想的一种特殊情况,Bellare等人。 (STOC,1993)建议这个问题的答案可能是肯定的。 researchers,尽管研究人员做出了很多努力来解决这个猜想,但它至今仍未解决。在这项工作中,我们在V和V之间进行分离,并提出了一个密切相关但较弱的问题:在一个多项式内很难将2-CSP近似为V的因数(但可能是V的超多项式)?假设指数时间假设(ETH),我们肯定地回答这个问题。具体而言,我们表明,除非ETH失败,否则没有多项式时间算法可以将2-CSP近似在V 1? 1(对数V)1 2?每0> 0。请注意,我们的比率不仅是多项式,而且几乎是线性的,这是最佳的,因为琐碎的算法会得出2-CSP的O(V)近似值。对于直接施泰纳网络(DSN)问题(又称定向施泰纳森林),我们的结果意味着后者的需求对数为多项式比率时具有不可约性,特别是假设ETH,没有多项式时间算法可以将DSN近似为在k 1 4?o(1)的系数内,其中k是需求对的数量,该比率大约是由于Chekuri等人(2011年,TALG,2011年)通过多项式时间算法获得的最著名近似比率的平方根。和Feldman等人(JCSS,2012年),则每个常数0> 0都会产生O(k 1 2+)-逼近。此外,如果我们假设存在一个更强的假设,即0> 0使得没有次指数时间该算法可以将可满足的3-CNF公式与甚至(1? )(即Gap-ETH),那么对于2-CSP,我们的归约法不仅排除了多项式时间(即(V)O(1)时间)算法,而且还排除了由参数化的固定参数易处理(FPT)算法变量数V。这些是运行时间为t(V)(V)O(1)的算法,其中t可以是任何函数。类似的改进也适用于通过需求对数k参数化的DSN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号