首页> 外文期刊>Earth, planets and space: EPS >Plasmoid-induced-reconnection and fractal reconnection
【24h】

Plasmoid-induced-reconnection and fractal reconnection

机译:等离子体诱导的重连接和分形重连接

获取原文
       

摘要

As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the induction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current sheet tends to have a fractal structure via the following process path: tearing sheet thinning Sweet-Parker sheet secondary tearing further sheet thinning . These processes occur repeatedly at smaller scales until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current sheet .
机译:作为理解耀斑快速重连的基本机制的关键,提出并研究了等离子体诱导重连和分形重连。我们首先简要总结一下最近的太阳观测结果,这些信息为我们提供了等离子体(助焊绳)喷射在火炬能量释放中的作用的提示。然后,我们讨论了等离子体诱导的重新连接模型,它是经典的两色带耀斑模型的扩展,我们将其称为CSHKP模型。新模型的基本组成部分是等离子体的形成和喷射,在磁能的存储(通过抑制重新连接)和诱导大量流入重新连接区域中起着至关重要的作用。使用简单的分析模型,我们表明,等离子体的喷射和加速度与重新连接过程密切相关,从而导致整个动力学的​​非线性不稳定性,从而唯一确定了宏观重新连接速率。接下来,我们显示当前的板材通过以下过程路径趋于具有分形结构:撕裂板材变薄Sweet-Parker板材二次撕裂进一步的板材变薄。这些过程会以较小的比例重复发生,直到达到微观等离子体比例(离子拉莫尔半径或离子惯性长度)为止,在该处会发生反常电阻率或无碰撞重新连接。当前的片最终具有具有许多不同大小的等离子体(磁岛)的分形结构。当这些等离子体从当前工作表中弹出时,会以高度依赖于时间的方式以各种不同的比例进行快速重新连接。最后,基于上述在分形电流表中的等离子体诱导的重新连接,提出了在日冕中快速重新连接的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号