首页> 外文期刊>Earth Surface Dynamics Discussions >The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep
【24h】

The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep

机译:山地侵蚀的周缘引擎-第1部分:霜冻开裂率和霜冻蠕变率

获取原文
       

摘要

With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.
机译:随着新生代晚期气候的加速冷却,冰川和冰缘侵蚀在地球表面越来越普遍。侵蚀方式的最终变化极大地改变了世界范围内许多山脉的大规模形态。尽管冰河指纹很容易通过其特征性的峡湾和U形山谷来区分,但冰河指纹更微妙,但在某些中高纬度地区可能很普遍。先前的模型提倡对陡峭的顶壁和冰川谷侧的碎屑产生进行霜冻驱动控制。在这里,我们调查了沿冰消融过程在较不陡峭的山地景观中也起着重要作用。要了解低起伏地区霜冻驱动过程的影响,就需要关注积聚在地面上的地幔的后果。我们提出了一个新的模型,该模型量化了两个关键的物理过程:霜冻开裂和霜冻蠕变,它是温度和沉积物厚度的函数。我们的结果对气候和沉积物的输运特性如何结合以扩大冰缘过程的强度提供了新的见解。地幔的厚度强烈地调节了气候与机械风化强度和沉积物通量之间的关系。我们的结果还指出,促进霜冻破裂的条件与促进霜冻蠕变的条件之间存在偏差,这表明稳定的气候可以一次仅为这些过程之一提供最佳条件。最后,量化这些关系也为将冰晶过程包括在大规模长期景观演化模型中提供了可能性,这在随附的论文中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号