...
首页> 外文期刊>Earth Surface Dynamics >Analysis of the drainage density of experimental and modelled tidal networks
【24h】

Analysis of the drainage density of experimental and modelled tidal networks

机译:实验和模拟潮汐网络的排水密度分析

获取原文
           

摘要

Based on controlled laboratory experiments, we numerically simulate theinitiation and long-term evolution of back-barrier tidal networks inmicro-tidal and meso-tidal conditions. The simulated pattern formation iscomparable to the morphological growth observed in the laboratory, which ischaracterised by relatively rapid initiation and slower adjustment towardsan equilibrium state. The simulated velocity field is in agreement withnatural reference systems such as the micro-tidal Venice Lagoon and themeso-tidal Wadden Sea. Special attention is given to the concept of drainagedensity, which is measured on the basis of the exceedance probabilitydistribution of the unchannelled flow lengths. Model results indicate thatthe exceedance probability distribution is characterised by an approximatelyexponential trend, similar to the results of laboratory experiments andobservations in natural systems. The drainage density increases greatlyduring the initial phase of tidal network development, while it slows downwhen the system approaches equilibrium. Due to the larger tidal prism, thetidal basin has a larger drainage density for the meso-tidal condition(after the same amount of time) than the micro-tidal case. In bothmicro-tidal and meso-tidal simulations, it is found that there is an initialrapid increase of the tidal prism which soon reaches a relatively steadyvalue (after approximately 40 yr), while the drainage density adjusts moreslowly. In agreement with the laboratory experiments, the initial bottomperturbations play an important role in determining the morphologicaldevelopment and hence the exceedance probability distribution of theunchannelled flow lengths. Overall, our study indicates an agreement of thegeometric characteristics between the numerical and experimental tidalnetworks.
机译:在受控实验室实验的基础上,我们在小潮汐和中潮汐条件下,对反向屏障潮汐网络的初始化和长期演化进行了数值模拟。模拟的图案形成可与实验室中观察到的形态生长相比,其特征在于相对快速的起始和较慢的向平衡状态的调节。模拟的速度场与自然参考系统如微潮威尼斯泻湖和潮汐瓦登海相吻合。特别注意排水密度的概念,它是根据未引导的水流长度的超标概率分布进行测量的。模型结果表明,超出概率分布具有近似指数趋势的特征,类似于自然系统中的实验室实验和观测结果。在潮汐网络发展的初始阶段,排水密度大大增加,而当系统趋于平衡时,排水密度则降低。由于潮汐棱镜较大,因此潮汐盆地在中潮条件下(经过相同的时间后)比小潮汐条件下的排水密度更大。在微潮汐和中潮汐模拟中,都发现潮汐棱镜的初始快速增加,很快就达到了一个相对稳定的值(大约40年后),而排水密度的调整速度却比较慢。与实验室实验一致,初始底部扰动在确定形态发展以及因此确定未窜流长度的超标概率分布中起着重要作用。总的来说,我们的研究表明数值和实验潮汐网络之间的几何特征是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号