首页> 外文期刊>Ecology and Evolution >The genetics of phenotypic plasticity. XI. Joint evolution of plasticity and dispersal rate
【24h】

The genetics of phenotypic plasticity. XI. Joint evolution of plasticity and dispersal rate

机译:表型可塑性的遗传学。十一。塑性和分散速率的共同演化

获取原文
           

摘要

AbstractIn a spatially heterogeneous environment, the rate at which individuals move among habitats affects whether selection favors phenotypic plasticity or genetic differentiation, with high dispersal rates favoring trait plasticity. Until now, in theoretical explorations of plasticity evolution, dispersal rate has been treated as a fixed, albeit probabilistic, characteristic of a population, raising the question of what happens when the propensity to disperse and trait plasticity are allowed to evolve jointly. We examined the effects of their joint evolution on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of loci whose phenotypic expression either are affected by the environment (plastic) or are not affected (nonplastic), plus a locus determining the propensity to disperse. When dispersal rate and trait plasticity evolve jointly, the system tends to dichotomous outcomes of either high trait plasticity and high dispersal, or low trait plasticity and low dispersal. The outcome strongly depended on starting conditions, with high trait plasticity and dispersal favored when the system started at high values for either trait plasticity or dispersal rate (or both). Adding a cost of plasticity tended to drive the system to genetic differentiation, although this effect also depended on initial conditions. Genetic linkage between trait plasticity loci and dispersal loci further enhanced this strong dichotomy in evolutionary outcomes. All of these effects depended on organismal life history pattern, and in particular whether selection occurred before or after dispersal. These results can explain why adaptive trait plasticity is less common than might be expected.
机译:摘要在空间异质性环境中,个体在生境之间移动的速率影响选择是否有利于表型可塑性或遗传分化,而高分散速率则有利于性状可塑性。到目前为止,在可塑性演化的理论探索中,尽管将分散速率视为人口特征的固定,尽管是概率性的,但提出了一个问题,即当允许分散性和特性可塑性共同发展时会发生什么。我们使用基于个人的计算机仿真模型检查了它们共同进化对可塑性选择的影响。在模型中,环境由50迪姆的线性梯度组成,在选择之前或之后都会发生分散。个体由其表型表达受环境影响(可塑性)或不受环境影响(非塑性)的基因座以及决定其分布倾向的基因座组成。当分散率和性状可塑性共同发展时,系统倾向于将结果分为高性状可塑性和高分散性,或低性状可塑性和低分散性。结果在很大程度上取决于起始条件,当系统以较高的性状可塑性或分散速率(或两者兼有)启动时,具有较高的性状可塑性和分散性。增加可塑性的成本往往会促使系统遗传分化,尽管这种效果还取决于初始条件。性状可塑性位点和分散位点之间的遗传联系进一步增强了这种强烈的二分法在进化结果中的地位。所有这些影响都取决于生物的生活史模式,尤其取决于选择是发生在扩散之前还是之后。这些结果可以解释为什么自适应性状可塑性不如预期的那么普遍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号