首页> 外文期刊>Ecological Processes >Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands
【24h】

Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands

机译:氨氧化古细菌和细菌由地理构成,分布在北美干旱地区的生物土壤地壳中

获取原文
       

摘要

Introduction Biological soil crusts (BSCs) can dominate surface cover in dry lands worldwide, playing an integral role in arid land biogeochemistry, particularly in N fertilization through fixation and cycling. Nitrification is a characteristic and universal N transformation in BSCs that becomes important for the export of N beyond the microscopic bounds of the crust itself. The contribution of ammonia-oxidizing bacteria (AOB) in BSCs has been shown, but the role and extent of the recently discovered ammonia-oxidizing archaea (AOA) have not. Methods We sampled various types of crusts in four desert regions across the western United States and characterized the composition and size of ammonia-oxidizing communities using clone libraries and quantitative PCR targeting the amoA gene, which codes for the ammonia monooxygenase enzyme, universally present in ammonia-oxidizing microbes. Results All archaeal amoA sequences retrieved from BSCs belonged to the Thaumarchaeota ( Nitrososphaera associated Group I.1b). Sequences from the Sonoran Desert, Colorado Plateau , and Great Basin were indistinguishable from each other but distinct from those of the Chihuahuan Desert. Based on amoA gene abundances, archaeal and bacterial ammonia oxidizers were ubiquitous in our survey, but the ratios of archaeal to bacterial ammonia oxidizers shifted from bacterially dominated in northern, cooler deserts to archaeally dominated in southern, warmer deserts. Conclusions Archaea are shown to be potentially important biogeochemical agents of biological soil crust N cycling. Conditions associated with different types of BSCs and biogeographical factors reveal a niche differentiation between AOA and AOB, possibly driven by temperature.
机译:简介生物土壤结皮(BSC)可以在全球干旱地区占据主导地位,在干旱地区生物地球化学中,尤其是在固氮和循环施氮方面,起着不可或缺的作用。硝化作用是BSC中普遍存在的特征性N转化,对于N的输出超出地壳本身的微观界限变得重要。已经显示了氨氧化细菌(AOB)在BSC中的贡献,但是最近发现的氨氧化古细菌(AOA)的作用和程度却没有。方法我们在美国西部四个沙漠地区采样了各种类型的硬皮,并使用克隆文库和针对amoA基因的定量PCR表征了氨氧化社区的组成和大小,该基因编码氨中普遍存在的氨单加氧酶-氧化微生物。结果从BSCs检索到的所有古细菌amoA序列均属于Thaumarchaeota(亚硝基亚纲I.1b组)。来自索诺兰沙漠,科罗拉多高原和大盆地的层序彼此之间没有区别,但与奇瓦瓦沙漠的层序不同。基于amoA基因的丰度,在我们的调查中古细菌和细菌氨氧化剂普遍存在,但是古细菌与细菌氨氧化剂的比例从北部的凉爽沙漠中的细菌占主导地位向南部的温暖沙漠中的细菌占主导地位转变。结论古细菌被证明是生物土壤地壳N循环的潜在重要生物地球化学剂。与不同类型的BSC和生物地理因素相关的条件表明,AOA和AOB之间的生态位差异可能是由温度驱动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号