首页> 外文期刊>International Journal of Astronomy and Astrophysics >Transfer Trajectory Design for Mars Exploration
【24h】

Transfer Trajectory Design for Mars Exploration

机译:火星探测的转移轨迹设计

获取原文
       

摘要

With regard to the human exploration of Mars, low energy transfer trajectory is designed for Mars exploration based on the combination of invariant manifolds, differential correction and aerobraking methods. The whole transfer trajectory is composed of four stages: 1) from the Earth parking orbit to the Lyapunov orbit around Lagrange point L2 in the Sun-Earth system; 2) from the Lyapunov orbit around L2 to the Lyapunov orbit around L1 in the Sun-Mars system; 3) from the Lyapunov orbit around L1 in the Sun-Mars system to the large elliptical orbit around Mars; and 4) from the large elliptical orbit around Mars to the near-Mars parking orbit. In the first three stages, the circular restricted three-body problem is considered, and the trajectory is designed by using invariant manifolds and the differential correction method. The simulation results show that the transfer trajectory designed by means of the invariant manifolds of the Lyapunov orbit costs lower energy and shorter time of flight than that designed by means of the invariant manifold of the Halo orbit. In the fourth stage, the two-body problem is considered, and the aerobraking method is applied. A comparative performance analysis of static and rotating atmospheric models is carried out by using the details of duration, aerodynamic loading of the Mars vehicle, and other orbital parameters. It is shown that, on the low periareon where the influence of the atmospheric density increases, the changes of orbit parameters between rotating and static atmospheric environments are in large difference, such as orbital semimajor axis, orbital eccentricity, and so on. The influence of Martian rotating atmospheric environment should be considered.
机译:关于人类对火星的探索,基于不变歧管,微分校正和气动制动方法的组合,为火星探索设计了低能量传递轨迹。整个转移轨迹包括四个阶段:1)从地球停放轨道到日地系统Lagrange点L2周围的Lyapunov轨道; 2)在太阳-火星系统中从L2附近的Lyapunov轨道到L1附近的Lyapunov轨道; 3)从太阳-火星系统中L1周围的Lyapunov轨道到火星周围的大椭圆轨道; 4)从围绕火星的椭圆形大轨道到近火星的停车轨道。在前三个阶段,考虑了圆形约束三体问题,并使用不变流形和微分校正方法设计了轨迹。仿真结果表明,与利用Halo轨道不变流形设计的传递轨迹相比,利用Lyapunov轨道不变流形设计的传递轨迹具有更低的能量和更短的飞行时间。在第四阶段,考虑了两体问题,并应用了气动制动方法。通过使用持续时间,火星飞行器的空气动力负载和其他轨道参数的详细信息,对静态和旋转大气模型进行了比较性能分析。结果表明,在大气密度影响增大的低外围区域,旋转和静态大气环境之间的轨道参数变化存在较大差异,如轨道半长轴,轨道偏心率等。应考虑火星旋转大气环境的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号