首页> 外文期刊>International Journal of Image, Graphics and Signal Processing >Stochastic Characterization of a MEMs based Inertial Navigation Sensor using Interval Methods
【24h】

Stochastic Characterization of a MEMs based Inertial Navigation Sensor using Interval Methods

机译:基于区间方法的基于MEMs的惯性导航传感器的随机表征

获取原文
           

摘要

The aim here remains to introduce effectiveness of interval methods in analyzing dynamic uncertainties for marine navigational sensors. The present work has been carried out with an integrated sensor suite consisting of a low cost MEMs inertial sensor, GPS receiver of moderate accuracy, Doppler velocity profiler and a magnetic fluxgate compass. Error bounds for all the sensors have been translated into guaranteed intervals. GPS based position intervals are fed into a forward-backward propagation method in order to estimate interval valued inertial data. Dynamic noise margins are finally computed from comparisons between the estimated and measured inertial quantities It has been found that the intervals as estimated by proposed approach are supersets of 95% confidence levels of dynamic errors of accelerations. This indicates a significant drift of dynamic error in accelerations which may not be clearly defined using stationary error bounds. On the other side bounds of non-stationary error for rate gyroscope are found to be in consistence with the intervals as predicted using stationary noise coefficients. The guaranteed intervals estimated by the proposed forward backward contractor, are close to 95% confidence levels of stationary errors computed over the sampling period. Reference [1]Priyanka Aggarwal, Zainab Syed, Aboelmagd Noureldin, Naser El-Sheimy, "MEMS-Based Integrated Navigation", Artech House, 2010, MA, pp. 35-61. [2]Sameh Nassar, PhD Thesis, "Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications", University of Calgari, Canada, 2003, URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html. [3]Aboelmagd Noureldin, Tashfeen B. Karamat, Mark D. Eberts, and Ahmed El-Shafie, Performance Enhancement of MEMS-Based INS/GPS Integration for Low-Cost Navigation Applications, IEEE Transactions On Vehicular Technology, Vol. 58, No. 3, March 2009. [4]M. Hayes, "Statistical Digital Signal Processing and Modeling", Hoboken, NJ: Wiley, 1996. [5]L. Jackson, "Digital Filters and Signal Processing", Norwell, MA: Kluwer, 1975. [6]J. Burg, "Maximum entropy spectral analysis," Ph.D. dissertation, Dept. Geophys., Stanford Univ., Stanford, CA, 1975. [7]D. W. Allan, "Statistics of atomic frequency standards," In Procs. Of IEEE, vol. 54, no. 2, pp. 221–230, Feb. 1966 [8]Haiying Hou, MS Thesis, "Modeling Inertial Sensors Errors Using Allan Variance", University of Calgary, 2004. [9]Minha Park, MS Thesis, "Error Analysis and Stochastic Modeling of MEMS based Inertial Sensors for Land Vehicle Navigation Applications", University of Calgary, 2004. [10]Naser El-Sheimy, Haiying Hou, and Xiaoji Niu, "Analysis and Modeling of Inertial Sensors Using Allan Variance", IEEE Transactions on Instrumentation And Measurement, Vol. 57, No. 1, January 2008. [11]M. M. Tehrani, "Ring laser gyro data analysis with cluster sampling technique," In Procs. Of SPIE, Vol. 412, 1983, pp. 207–220. [12]Denne, W., "Magnetic Compass Deviation and Correction", 3rd Ed. Brown, Son, and Ferguson, 1998, 165 pp. [13]P.L.N. Raju, "Fundamentals of GPS, Satellite Remote Sensing and GIS Applications in Agricultural Meteorology", pp. 121-150. [14]Richard B. Langley, "Dilution of Precision", GPS World, May 1999. [15]Novatel, Technical Report, "GPS Position Accuracy Measures", APN-029 Rev 1, December, 2003. [16]Luc Jaulin, Michel Kieffer, Olivier Didrit and Eric Walter, "Applied Interval Analysis", Springer-Verlag, London, 2001, pp. 77-81. [17]D. Waltz, "Generating semantic descriptions from drawings of scenes with shadows," in The Psychol. Comput. Vision, New York, 1975, pp. 19–91. [18]Andrew Lammas, Karl Sammut and Fangpo He, "6-DoF Navigation Systems for Autonomous Underwater Vehicles", DOI: 10.5772/8978, Chapter 23 of Book, "Mobile Robots Navigation", Ed. By Alejandra Barrera, 2010.
机译:这里的目的仍然是介绍间隔方法在分析海洋航行传感器动态不确定性方面的有效性。目前的工作是通过集成传感器套件完成的,该传感器套件包括低成本MEMs惯性传感器,中等精度的GPS接收器,多普勒速度剖面仪和磁通门罗盘。所有传感器的误差范围已转换为保证的时间间隔。基于GPS的位置间隔被馈入向前-向后传播方法中,以便估算间隔值惯性数据。最后,通过比较估计的惯量和测得的惯量来计算动态噪声容限。已经发现,所提出的方法所估计的间隔是加速度动态误差的95%置信度的超集。这表明加速度中动态误差的明显漂移,使用静态误差范围可能无法明确定义。另一方面,发现速率陀螺仪的​​非平稳误差范围与使用平稳噪声系数预测的间隔一致。拟议中的前向后承包商估算的保证间隔接近于在采样周期内计算出的固定误差的95%置信度。参考文献[1] Priyanka Aggarwal,Zainab Syed,Aboelmagd Noureldin,Naser El-Sheimy,“基于MEMS的集成导航”,Artech House,2010,MA,第35-61页。 [2] Sameh Nassar博士论文,“为INS和INS / DGPS应用程序改进惯性导航系统(INS)错误模型”,加拿大卡尔加里大学,2003年,URL:http://www.geomatics.ucalgary.ca /links/GradTheses.html。 [3] Aboelmagd Noureldin,Tashfeen B. Karamat,Mark D. Eberts和Ahmed El-Shafie,针对低成本导航应用的基于MEMS的INS / GPS集成的性能增强,IEEE车载技术学报,第1卷。 58,第3号,2009年3月。[4]M。 Hayes,“统计数字信号处理和建模”,新泽西州,霍博肯:Wiley,1996。[5] L。杰克逊,“数字滤波器和信号处理”,诺威尔,马萨诸塞州:克鲁沃,1975年。[6]J。 Burg,“最大熵谱分析”,博士学位。论文,地球物理系,斯坦福大学,加利福尼亚州斯坦福市,1975年。[7] D。 W. Allan,“ Procs中的原子频率标准统计”。 IEEE的,卷。 54号2,第221–230页,1966年2月。[8]侯海英,硕士论文,“使用Allan方差对惯性传感器误差进行建模”,卡尔加里大学,2004年。[9] Minha Park,硕士论文,“误差分析与随机性”用于陆上车辆导航应用的基于MEMS的惯性传感器建模”,卡尔加里大学,2004年。[10] Naser El-Sheimy,侯海英和牛晓吉,“使用Allan方差分析和建模惯性传感器”,IEEE仪器仪表学报和测量,卷。 57,第1号,2008年1月。 M. Tehrani,“使用簇采样技术进行环形激光陀螺仪数据分析”,在Procs中。 SPIE,第412,1983年,第207-220页。 [12] Denne,W。,“磁罗经偏差和校正”,第三版。 Brown,Son和Ferguson,1998年,第165页。[13] P.L.N。 Raju,“ GPS,卫星遥感和GIS在农业气象中的应用基础”,第121-150页。 [14] Richard B. Langley,“精度稀释”,GPS世界,1999年5月。[15] Novatel,技术报告,“ GPS位置精度测量”,APN-029 Rev 1,2003年12月。[16] Luc Jaulin ,Michel Kieffer,Olivier Didrit和Eric Walter,“应用间隔分析”,施普林格出版社,伦敦,2001年,第77-81页。 [17] D。 Waltz,《 Psychol》中的“从带有阴影的场景的绘图中生成语义描述”。计算愿景,纽约,1975年,第19-91页。 [18] Andrew Lammas,Karl Sammut和Fangpo He,“用于自主水下航行器的6自由度导航系统”,DOI:10.5772 / 8978,《移动机器人导航》,第23章,编辑。亚历杭德拉·巴雷拉(Alejandra Barrera),2010年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号