【24h】

Effects of internal electrode cooling on irreversible electroporation using a perfused organ model

机译:使用灌注器官模型,内部电极冷却对不可逆电穿孔的影响

获取原文
       

摘要

This study evaluates the effects of active electrode cooling, via internal fluid circulation, on the irreversible electroporation (IRE) lesion, deployed electric current and temperature changes using a perfused porcine liver model. A bipolar electrode delivered IRE electric pulses with or without activation of internal cooling to nine porcine mechanically perfused livers. Pulse schemes included a constant voltage, and a preconditioned delivery combined with an arc-mitigation algorithm. After treatment, organs were dissected, and treatment zones were stained using triphenyl-tetrazolium chloride (TTC) to demonstrate viability. Thirty-nine treatments were performed with an internally cooled applicator and 21 with a non-cooled applicator. For the constant voltage scenario, the average final electrical current measured was 26.37 and 29.20?A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 33.01 and 42.43?°C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.88-by-2.08?cm and 3.86-by-2.12?cm for the cooled and uncooled electrode respectively ([Formula: see text], [Formula: see text]). Similarly, the preconditioned/arc-mitigation scenario yielded an average final electrical current measurement of a 41.07 and 47.20?A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 34.93 and 44.90?°C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.67-by-2.27?cm and 3.58-by-2.09?cm for the cooled and uncooled applicators ([Formula: see text]). The internally-cooled bipolar applicator offers advantages that could improve clinical outcomes. Thermally mitigating internal perfusion technology reduced tissue temperatures and electric current while maintaining similar lesion sizes.
机译:这项研究使用灌注猪肝模型评估了通过内部流体循环进行的主动电极冷却对不可逆电穿孔(IRE)病变,部署的电流和温度变化的影响。一个双极电极将IRE电脉冲传递给9个猪机械灌注肝脏,无论是否激活内部冷却。脉冲方案包括恒定电压,预处理输出和消弧算法。治疗后,解剖器官,并使用三苯基氯化四氮唑(TTC)对治疗区染色,以证明其可行性。使用内部冷却的施药器进行39次治疗,使用非冷却的施药器进行21次治疗。对于恒定电压情况,冷却电极和未冷却电极的平均最终最终测量电流分别为26.37和29.20?A([公式:请参见文本])。测得的冷却电极和未冷却电极的平均最终温度分别为33.01和42.43?C([公式:参见文字])。冷却电极和未冷却电极的平均测量消融(固定病变)分别为3.88×2.08?cm和3.86×2.12?cm([公式:请参见文本],[公式:请参见文本])。同样,经过预处理/缓和电弧的情况下,冷却电极和未冷却电极的平均最终电流测量值分别为41.07和47.20?A([公式:请参见文本])。测得的冷却电极和未冷却电极的平均最终温度分别为34.93和44.90?C([公式:参见文字])。对于冷却和未冷却的涂抹器,平均测量的消融(固定病变)分别为3.67×2.27?cm和3.58×2.09?cm([公式:请参见文字])。内部冷却的双极施药器具有可以改善临床结果的优势。热缓解内部灌注技术可降低组织温度和电流,同时保持相似的病变大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号