首页> 外文期刊>International Journal of Health Geographics >Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya
【24h】

Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya

机译:肯尼亚中部三个水稻农业乡村综合体中用于疟疾制图的植被协变量的远程和野外量化

获取原文
       

摘要

Background We examined algorithms for malaria mapping using the impact of reflectance calibration uncertainties on the accuracies of three vegetation indices (VI)'s derived from QuickBird data in three rice agro-village complexes Mwea, Kenya. We also generated inferential statistics from field sampled vegetation covariates for identifying riceland Anopheles arabiensis during the crop season. All aquatic habitats in the study sites were stratified based on levels of rice stages; flooded, land preparation, post-transplanting, tillering, flowering/maturation and post-harvest/fallow. A set of uncertainty propagation equations were designed to model the propagation of calibration uncertainties using the red channel (band 3: 0.63 to 0.69 μm) and the near infra-red (NIR) channel (band 4: 0.76 to 0.90 μm) to generate the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI). The Atmospheric Resistant Vegetation Index (ARVI) was also evaluated incorporating the QuickBird blue band (Band 1: 0.45 to 0.52 μm) to normalize atmospheric effects. In order to determine local clustering of riceland habitats Gi*(d) statistics were generated from the ground-based and remotely-sensed ecological databases. Additionally, all riceland habitats were visually examined using the spectral reflectance of vegetation land cover for identification of highly productive riceland Anopheles oviposition sites. Results The resultant VI uncertainties did not vary from surface reflectance or atmospheric conditions. Logistic regression analyses of all field sampled covariates revealed emergent vegetation was negatively associated with mosquito larvae at the three study sites. In addition, floating vegetation (-ve) was significantly associated with immature mosquitoes in Rurumi and Kiuria (-ve); while, turbidity was also important in Kiuria. All spatial models exhibit positive autocorrelation; similar numbers of log-counts tend to cluster in geographic space. The spectral reflectance from riceland habitats, examined using the remote and field stratification, revealed post-transplanting and tillering rice stages were most frequently associated with high larval abundance and distribution. Conclusion NDVI, SAVI and ARVI generated from QuickBird data and field sampled vegetation covariates modeled cannot identify highly productive riceland An. arabiensis aquatic habitats. However, combining spectral reflectance of riceland habitats from QuickBird and field sampled data can develop and implement an Integrated Vector Management (IVM) program based on larval productivity.
机译:背景我们研究了使用反射率校准不确定性对肯尼亚米威亚三个水稻农业乡村综合体中QuickBird数据得出的三个植被指数(VI)的准确性的影响进行疟疾制图的算法。我们还从田间采样的植被协变量生成了推论统计数据,以在作物季节期间识别稻田阿拉伯按蚊。研究地点的所有水生生境均根据水稻分期进行了分层。水淹,整地,移植后,分er,开花/成熟和收获后/休耕。设计了一组不确定度传播方程式,以使用红色通道(波段3:0.63至0.69μm)和近红外(NIR)通道(波段4:0.76至0.90μm)来模拟校准不确定度的传播,从而生成校准不确定度。归一化植被指数(NDVI)和土壤调整植被指数(SAVI)。还评估了大气抗植被指数(ARVI)并结合了QuickBird蓝色波段(波段1:0.45至0.52μm)以归一化大气影响。为了确定稻田生境的局部聚类,从地面和遥感生态数据库中得出了Gi *(d)统计数据。此外,使用植被覆盖的光谱反射率目视检查了所有稻田生境,以鉴定高产稻田按蚊产卵地点。结果所得的VI不确定度与表面反射率或大气条件无关。对所有现场抽样协变量的逻辑回归分析显示,在这三个研究地点,新兴植被与蚊虫幼虫呈负相关。此外,在鲁鲁米和基里阿(-ve),漂浮的植被(-ve)与未成熟的蚊子显着相关。同时,浊度在Kiuria中也很重要。所有空间模型都表现出正自相关。相似数量的日志计数倾向于聚集在地理空间中。稻田栖息地的光谱反射率(通过远程和田间分层检查)显示,水稻移栽后和分till期最常与幼虫的丰度和分布相关。结论从QuickBird数据生成的NDVI,SAVI和ARVI和建模的田间采样植被协变量无法识别高产水稻田。阿拉伯水生生境。但是,结合QuickBird对稻田生境的光谱反射率和现场采样数据可以开发和实施基于幼虫生产力的综合病媒管理(IVM)程序。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号