...
首页> 外文期刊>International Journal of Electrochemical Science >Reduction of vanadium(V) in a microbial fuel cell: V(IV) Migration and Electron Transfer Mechanism
【24h】

Reduction of vanadium(V) in a microbial fuel cell: V(IV) Migration and Electron Transfer Mechanism

机译:减少微生物燃料电池中的钒(V):V(IV)迁移和电子转移机理

获取原文

摘要

The effects of vanadium on the microbial fuel cell performance, migration and distribution of V(Ⅳ) aswell as electron transfer mechanism of single-chamber MFC were investigated by SEM, FourierTransform Infrared Spectroscopy (FTIR), Cyclic Voltammetry (CV) and Electrochemical ImpedanceSpectroscopy (EIS). With anolyte vanadium concentration of 100 mg/L, the shortest degradation cyclewas 130.67 h, while the degradation rate was 99.44%. V(Ⅴ) combined with hydroxyl and carboxylgroups to form V(Ⅳ) organic participates, part of which deposited on the anode surface, and the otherpart distributed in anolyte. V(Ⅴ) around cathode was reduced to V(Ⅳ) receiving electrons from theanode, meanwhile V(Ⅴ) in anolyte was reduced to V(Ⅳ) owing to the electrons transfer on membranebinding enzyme complex. V(Ⅴ) participated in cathode reactions instead of oxygen, accelerating thesynchronization and integrity of electrode reactions.
机译:通过SEM,傅里叶变换红外光谱(FTIR),循环伏安法(CV)和电化学阻抗谱( EIS)。阳极液中钒的浓度为100 mg / L时,最短的降解周期为130.67 h,而降解率为99.44%。 V(Ⅴ)与羟基和羧基结合形成V(Ⅳ)有机物,其中一部分沉积在阳极表面,另一部分分布在阳极液中。阴极周围的V(Ⅴ)还原为从阳极接收电子的V(Ⅳ),而阳极电解液中的V(Ⅴ)由于电子在膜结合酶复合物上的转移而还原为V(Ⅳ)。 V(Ⅴ)代替氧气参与阴极反应,加速了电极反应的同步性和完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号