首页> 外文期刊>Impulse >A Hodgkin-Huxley model for conduction velocity in the medial giant fiber of the earthworm, Lumbricus terrestris
【24h】

A Hodgkin-Huxley model for conduction velocity in the medial giant fiber of the earthworm, Lumbricus terrestris

机译:worm内侧巨纤维中传导速度的霍奇金-赫克斯利模型

获取原文
       

摘要

The speed of nerve impulse conduction, or conduction velocity, is crucial to the survival of animals. For example, rapid conduction velocity in the nerve pathways underlying escape behavior represents a distinct evolutionary advantage. Peripheral demyelinating diseases can lead to a loss of conduction velocity and subsequent serious symptoms and diseases, such as the fatigue and gait deficiencies commonly observed in multiple sclerosis patients. A better understanding of the biophysical mechanisms underlying conduction velocity may yield insights that could be valuable in the development of therapies for such diseases. Nerve cord gigantism and myelin sheath are the two basic mechanisms that increase the conduction speed of electrical nerve impulses. The giant fibers of the common earthworm Lumbricus terrestris are made up of many neurons electrically coupled by high fidelity gap junctions, permitting a unique perspective on the contribution of transmembrane ionic currents on conduction velocity. Furthermore, the previously noted taper in diameter of the oligochaete giant fibers along the longitudinal axis presents another unique opportunity to study the role of morphological properties on conduction velocity, even within a single fiber pathway. The role of these gap junctions and their interaction with axonal taper in predicting conduction velocity has not been studied closely in the annelid. Intracellular recording from individual giant fibers in earthworm is very challenging, and the genetic and pharmacological tools are not yet available to manipulate gap junction communication reliably. Because of these technical limitations, a combination of extracellular electrophysiology, histology, and computational modeling were used to explore the influence of, and interaction between, electrical coupling and axon diameter on conduction velocity. We observed that conduction velocity in the medial giant fiber (MGF) seems to be predicted by a nonlinear supra-additive interaction between axonal conductance and gap junction conductance. This suggests that both are critical considerations when studying nerve impulse conduction.
机译:神经冲动传导的速度或传导速度对动物的生存至关重要。例如,逃逸行为背后的神经通路中的快速传导速度代表了独特的进化优势。周围性脱髓鞘疾病可导致传导速度下降,继而导致严重的症状和疾病,例如多发性硬化症患者中常见的疲劳和步态缺陷。更好地了解传导速度背后的生物物理机制可能会得出一些见解,这些见解在此类疾病的治疗方法开发中可能是有价值的。神经巨人症和髓鞘是增加电神经冲动传导速度的两个基本机制。普通Lu类mb虫的巨大纤维由许多神经元组成,这些神经元通过高保真度的间隙连接电耦合,从而使人们对跨膜离子电流对传导速度的贡献具有独特的见解。此外,先前提到的沿纵向轴的寡毛巨型纤维的直径锥度提供了另一个独特的机会来研究形态特性对传导速度的作用,即使在单条纤维路径中也是如此。这些间隙连接的作用以及它们与轴突锥度的相互作用在预测传导速度中的作用尚未在神经鞘内进行过深入研究。 from中单个巨型纤维的细胞内记录非常具有挑战性,并且遗传和药理学工具尚无法可靠地操纵间隙连接通讯。由于这些技术局限性,细胞外电生理学,组织学和计算模型的组合被用来探讨电耦合和轴突直径对传导速度的影响以及相互作用。我们观察到内侧巨纤维(MGF)的传导速度似乎是由轴突电导和间隙连接电导之间的非线性超加性相互作用预测的。这表明在研究神经冲动传导时,两者都是至关重要的考虑因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号