首页> 外文期刊>Atmosphere >Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea
【24h】

Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea

机译:地中海多热带气旋的多物理场集合与大气-海洋耦合模型模拟

获取原文
获取外文期刊封面目录资料

摘要

Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following stages of its life cycle and remained active for approximately 80 h, moving along the Mediterranean Sea from west to east, eventually reaching the Adriatic Sea. Two different modeling approaches, which are comparable in terms of computational cost, are analyzed here to represent the cyclone evolution. First, a multi-physics ensemble using different microphysics and turbulence parameterization schemes available in the WRF (weather research and forecasting) model is employed. Second, the COAWST (coupled ocean–atmosphere wave sediment transport modeling system) suite, including WRF as an atmospheric model, ROMS (regional ocean modeling system) as an ocean model, and SWAN (simulating waves in nearshore) as a wave model, is used. The advantage of using a coupled modeling system is evaluated taking into account air–sea interaction processes at growing levels of complexity. First, a high-resolution sea surface temperature (SST) field, updated every 6 h, is used to force a WRF model stand-alone atmospheric simulation. Later, a two-way atmosphere–ocean coupled configuration is employed using COAWST, where SST is updated using consistent sea surface fluxes in the atmospheric and ocean models. Results show that a 1D ocean model is able to reproduce the evolution of the cyclone rather well, given a high-resolution initial SST field produced by ROMS after a long spin-up time. Additionally, coupled simulations reproduce more accurate (less intense) sea surface heat fluxes and a cyclone track and intensity, compared with a multi-physics ensemble of standalone atmospheric simulations.
机译:2014年1月19日至22日,从大西洋向东移动的斜压波在直布罗陀海峡上空产生了一个低边界,并导致随后的温带气旋加剧。该系统在其生命周期的以下阶段表现出类似热带的特征,并保持活跃约80小时,沿地中海从西向东移动,最终到达亚得里亚海。这里分析了两种不同的建模方法,它们在计算成本方面可比,它们代表了旋风的演变。首先,采用了多物理场合奏,它使用了WRF(天气研究和预报)模型中可用的不同微物理学和湍流参数化方案。其次,COAWST(海洋-大气波耦合沉积物传输建模系统)套件包括WRF作为大气模型,ROMS(区域海洋建模系统)作为海洋模型以及SWAN(模拟近岸海浪)作为波浪模型。用过的。评估使用耦合建模系统的优势时,考虑了复杂性不断提高的海-海相互作用过程。首先,每6小时更新一次高分辨率海面温度(SST)字段,以强制执行WRF模型的独立大气模拟。后来,使用COAWST进行了双向的海气耦合配置,其中在大气和海洋模型中使用一致的海面通量更新了SST。结果表明,考虑到ROMS在很长的旋转时间后产生的高分辨率初始SST场,一维海洋模型能够很好地再现旋风的演变。此外,与多物理场独立大气模拟相比,耦合模拟可重现更准确(强度较小)的海面热通量以及气旋的轨迹和强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号