...
首页> 外文期刊>Atmospheric Measurement Techniques >Sensitivity studies for a space-based methane lidar mission
【24h】

Sensitivity studies for a space-based methane lidar mission

机译:天基甲烷激光雷达任务的敏感性研究

获取原文
           

摘要

Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
机译:甲烷是仅次于水蒸气和二氧化碳的大气中第三重要的温室气体。为了更好地了解生物圈-大气交换过程和潜在的气候反馈,量化地球表面排放的主要障碍是缺乏对甲烷的准确和全球观测。天基综合路径差分吸收(IPDA)激光雷达有可能填补这一空白,DLR和CNES在德国-法国气候监测框架内提出了在极轨小卫星上进行甲烷远程激光雷达任务(MERLIN)倡议。在环境,技术和预算有限的情况下,系统仿真可用于识别关键性能参数并找到有利的仪器配置。灵敏度研究使用大气和地表状态的代表性平均值来估计测量精度,即由仪器噪声引起的随机不确定性。 MERLIN的关键性能参数是平均激光功率,望远镜尺寸,轨道高度,表面反射率和探测器噪声。一个中等大小的激光雷达仪器,在506公里的轨道上具有0.45 W的平均激光功率和0.55 m的望远镜直径,可以在亚卫星轨道上提供50 km的甲烷平均柱测量,整个植被的精度约为1%。使用1.65μm的甲烷吸收槽可改善近表面测量灵敏度,并大大放松了对波长稳定性的要求,该要求已被确定为太空A-SCOPE的前期A研究中的主要技术风险之一。欧洲航天局的IPDA二氧化碳激光雷达。在此波长位置将湿度和温度敏感性降至最低,将能够在热带湿地(甲烷排放量很大程度上不确定的关键地区)进行精确测量。与实际的被动式遥感器相比,极地地区的测量将是可能的,并且由于气溶胶层和薄冰云引起的偏差也将降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号