首页> 外文期刊>Atmospheric Measurement Techniques >Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
【24h】

Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals

机译:根据卫星取回值对云顶有效半径进行参数化,并考虑垂直光子传输:液滴浓度和液体水路径取回中产生的偏差的量化和校正

获取原文
           

摘要

Droplet concentration ( Nsubd/sub ) and liquid water path (LWP) retrievals from passive satellite retrievals of cloud optical depth ( τ ) and effective radius ( rsube/sub ) usually assume the model of an idealized cloud in which the liquid water content (LWC) increases linearly between cloud base and cloud top (i.e. at a fixed fraction of the adiabatic LWC). Generally it is assumed that the retrieved rsube/sub value is that at the top of the cloud. In reality, barring rsube/sub retrieval biases due to cloud heterogeneity, the retrieved rsube/sub is representative of smaller values that occur lower down in the cloud due to the vertical penetration of photons at the shortwave-infrared wavelengths used to retrieve rsube/sub . This inconsistency will cause an overestimate of Nsubd/sub and an underestimate of LWP (referred to here as the “penetration depth bias”), which this paper quantifies via a parameterization of the cloud top rsube/sub as a function of the retrieved rsube/sub and τ . Here we estimate the relative rsube/sub underestimate for a range of idealized modelled adiabatic clouds using bispectral retrievals and plane-parallel radiative transfer. We find a tight relationship between g re = r e cloud top / r e retrieved and τ and that a 1-D relationship approximates the modelled data well. Using this relationship we find that gsubre/sub values and hence Nsubd/sub and LWP biases are higher for the 2.1 μ m channel rsube/sub retrieval ( rsube2.1/sub ) compared to the 3.7 μ m one ( rsube3.7/sub ). The theoretical bias in the retrieved Nsubd/sub is very large for optically thin clouds, but rapidly reduces as cloud thickness increases. However, it remains above 20?% for ττrsube2.1/sub and rsube3.7/sub , respectively. We also provide a parameterization of penetration depth in terms of the optical depth below cloud top ( dτ ) for which the retrieved rsube/sub is likely to be representative. The magnitude of the Nsubd/sub and LWP biases for climatological data sets is estimated globally using 1 year of daily MODIS (MODerate Imaging Spectroradiometer) data. Screening criteria are applied that are consistent with those required to help ensure accurate Nsubd/sub and LWP retrievals. The results show that the SE Atlantic, SE Pacific and Californian stratocumulus regions produce fairly large overestimates due to the penetration depth bias with mean biases of 32–35?% for rsube2.1/sub and 15–17?% for rsube3.7/sub . For the other stratocumulus regions examined the errors are smaller (24–28?% for rsube2.1/sub and 10–12?% for rsube3.7/sub ). Significant time variability in the percentage errors is also found with regional mean standard deviations of 19–37?% of the regional mean percentage error for rsube2.1/sub and 32–56?% for rsube3.7/sub . This shows that it is important to apply a daily correction to Nsubd/sub for the penetration depth error rather than a time–mean correction when examining daily data. We also examine the seasonal variation of the bias and find that the biases in the SE Atlantic, SE Pacific and Californian stratocumulus regions exhibit the most seasonality, with the largest errors occurring in the December, January and February (DJF) season. LWP biases are smaller in magnitude than those for Nsubd/sub ( ?8 to ?11 % for rsube2.1/sub and ?3.6 to ?6.1 % for rsube3.7/sub ). In reality, and especially for more heterogeneous clouds, the vertical penetration error will be combined with a number of other errors that affect both the rsube/sub and τ , which are potentially larger and may compensate or enhance the bias due to vertical penetration depth. Therefore caution is required when applying the bias corrections; we suggest that they are only used for more homogeneous clouds.
机译:通常采用该模型作为模型,从云光学深度(τ)和有效半径(r e )的被动卫星反演中获得液滴浓度(N d )和液态水路径(LWP)。理想化云的概念,其中液态水含量(LWC)在云底和云顶之间线性增加(即,绝热LWC的固定分数)。通常,假定检索到的r e 值是在云的顶部。实际上,如果不考虑由于云异质性引起的r e 检索偏差,则检索到的r e 代表较小的值,这些较小的值由于光子的垂直穿透而出现在云层的下方。在用于检索r e 的短波红外波长处。这种不一致会导致N d 的高估和LWP的低估(这里称为“穿透深度偏差”),本文通过对云顶r e的参数化进行量化作为检索到的r e 和τ的函数。在这里,我们使用双光谱检索和平面平行辐射传输,估算了一系列理想化的绝热云的相对r e 低估了。我们发现g re = r e云顶/检索到的e与τ之间存在紧密的关系,并且一维关系很好地近似了建模数据。利用这种关系,我们发现g re 值,因此对于2.1μm通道r e 检索(N r d 和LWP偏差更高(r e2.1 )与3.7μm(r e3.7 )相比。对于光学薄云而言,检索到的N d 的理论偏差非常大,但随着云厚度的增加而迅速减小。但是,ττr e2.1 和r e3.7 分别保持在20%以上。我们还根据云顶以下的光学深度(dτ)提供了穿透深度的参数化,对于该深度,检索到的r e 可能具有代表性。全球气候数据集的N d 和LWP偏差的大小是使用1年的每日MODIS(现代成像光谱仪)数据进行全球估算的。筛选标准的应用与确保准确的N d 和LWP检索所需的标准一致。结果表明,由于穿透深度偏差,r e2.1 和15–17?的平均偏差为32–35%,东南大西洋,东南太平洋和加利福尼亚的层积云地区产生了相当大的高估。 r e3.7 的%。对于检查的其他层积云区域,误差较小(r e2.1 为24–28%,r e3.7 为10–12%)。还发现百分比误差具有显着的时间变化性,r e2.1 的区域平均标准误差为区域平均百分比误差的19–37?%,r 的区域平均标准误差为32–56?% e3.7 。这表明在检查每日数据时,对穿透深度误差的N d 进行每日校正非常重要,而不是对时间均值进行校正。我们还研究了偏差的季节变化,发现东南大西洋,东南太平洋和加利福尼亚平流积云地区的偏差表现出最大的季节性,最大的误差发生在12月,1月和2月(DJF)季节。 LWP偏差的幅度小于N d 的幅度(r e2.1 的范围为8%至?11%,r e3的范围为3.6%至?6.1% .7 )。实际上,尤其是对于更异构的云,垂直渗透误差将与影响r e 和τ的许多其他误差相结合,后者可能更大,并可能补偿或增强偏差由于垂直穿透深度。因此,在应用偏差校正时需要小心;我们建议它们仅用于更均匀的云。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号