...
首页> 外文期刊>Atmospheric Measurement Techniques >Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US
【24h】

Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US

机译:低地球轨道(TROPOMI)和对地静止(GeoCARB,GEO-CAPE)卫星仪器的比较分析,用于在精细的区域范围内限制甲烷排放:在美国东南部的应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We conduct Observing System Simulation Experiments (OSSEs) to compare the ability of future satellite measurements of atmospheric methane columns (TROPOMI, GeoCARB, GEO-CAPE) for constraining methane emissions down to the 25 km scale through inverse analyses. The OSSE uses the GEOS-Chem chemical transport model (0.25°?×?0.3125° grid resolution) in a 1-week simulation for the Southeast US with 216?emission elements to be optimized through inversion of synthetic satellite observations. Clouds contaminate 73 %–91 % of the viewing scenes depending on pixel size. Comparison of GEOS-Chem to Total Carbon Column Observing Network (TCCON) surface-based methane column observations indicates a model transport error standard deviation of 12 ppb, larger than the instrument errors when aggregated on the 25 km model grid scale, and with a temporal error correlation of 6 h. We find that TROPOMI (7×7 kmsup2/sup pixels, daily return time) can provide a coarse regional optimization of methane emissions, comparable to results from an aircraft campaign (SEACsup4/supRS), and is highly sensitive to cloud cover. The geostationary instruments can do much better and are less sensitive to cloud cover, reflecting both their finer pixel resolution and more frequent observations. The information content from GeoCARB toward constraining methane emissions increases by 20 %–25 % for each doubling of the GeoCARB measurement frequency. Temporal error correlation in the transport model moderates but does not cancel the benefit of more frequent measurements for geostationary instruments. We find that GeoCARB observing twice a day would provide 70 % of the information from the nominal GEO-CAPE mission preformulated by NASA in response to the Decadal Survey of the US National Research Council.
机译:我们进行观测系统模拟实验(OSSE),以通过反向分析比较未来卫星对大气甲烷气柱(TROPOMI,GeoCARB,GEO-CAPE)的测量能力,以将甲烷排放限制在25 km以内。 OSSE在对美国东南部具有216?排放元素的1周模拟中,使用GEOS-Chem化学传输模型(0.25°?×?0.3125°网格分辨率)通过合成卫星观测值的反演进行了优化。根据像素大小,云会污染73%–91%的观看场景。 GEOS-Chem与总碳柱观测网络(TCCON)基于地面的甲烷柱观测值的比较表明,模型传输误差标准偏差为12 ppb,大于在25 km模型网格规模上汇总的仪器误差,并且具有时间性6小时的误差相关性。我们发现TROPOMI(7×7 km 2 像素,每日返回时间)可以提供甲烷排放的粗略区域优化,与飞机战役的结果(SEAC 4 RS),并且对云层高度敏感。对地静止仪器可以做得更好,并且对云层的敏感度较低,这反映了它们的像素分辨率更高且观测频率更高。 GeoCARB测量频率每增加一倍,GeoCARB抑制甲烷排放的信息量就会增加20%–25%。运输模型中的时间误差相关性适度但不会抵消对地静止仪器进行更频繁测量的好处。我们发现,每天进行两次观测的GeoCARB将提供NASA为响应美国国家研究委员会的十年调查而预先制定的名义GEO-CAPE任务的70%的信息。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号