...
首页> 外文期刊>Atmospheric Measurement Techniques >Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic
【24h】

Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

机译:在加拿大高北极地区的三个傅立叶变换光谱仪之间的甲烷交叉验证:SCISAT ACE-FTS,GOSAT TANSO-FTS和地面FTS测量

获取原文
           

摘要

We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a?cross-validation between three data sets: two from spaceborne instruments and one from a?ground-based instrument. All are Fourier transform spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a?solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a?nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a?Bruker 125HR Fourier transform infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory at Eureka, Nunavut (80°?N, 86°?W) since 2006. For each pair of instruments, measurements are collocated within 500?km and 24?h. An additional collocation criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a?common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a?good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1?DOFS per altitude level). We take partial columns between roughly 5 and 30?km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10?km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ±3?×?10sup22/sup?molecules?cmsup−2/sup. Expressed as median?±?median absolute deviation (expressed in partial column units or as a percentage), these differences are 0.11?±?9.60??×?10sup20/sup?molecules?cmsup−2/sup (0.012?±?1.018?%) for TANSO-FTS–PEARL-FTS, −2.6?±?2.6?×?10sup21/sup??cmsup−2/sup (−1.6?±?1.6?%) for ACE-FTS–PEARL-FTS, and 7.4?±?6.0?×?10sup20/sup?molecules?cmsup−2/sup (0.78?±?0.64?%) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a?function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.
机译:我们提出了加拿大高北极地区甲烷剖面遥感测量结果的交叉验证。准确,准确地测量甲烷对于定量地了解其在气候系统和全球变化中的作用至关重要。在这里,我们展示了三个数据集之间的交叉验证:两个来自星载仪器,另一个来自地面仪器。所有这些都是傅立叶变换光谱仪(FTS)。我们考虑了加拿大SCISAT大气化学实验(ACE)-FTS,自2004年开始运行的太阳掩星红外光谱仪,以及日本温室气体观测卫星(GOSAT)的热和近红外碳观测传感器(TANSO)的热红外波段。 -FTS是自2009年以来在太阳和地面红外波长下运行的天底/近天底扫描FTS仪器。地面仪器是布鲁克125HR傅立叶变换红外(FTIR)光谱仪,用于测量中红外太阳吸收光谱自2006年以来,是位于努纳武特(Nunavut)尤里卡(80°N,86°W)的极地大气研究实验室(PEARL)岭实验室。对于每对仪器而言,测量值都位于500?km和24?h之内。发现基于潜在涡度值的其他并置标准不会显着影响测量之间的差异。每个比较集的配置文件都重新定义为共同的垂直网格。为了解决不同的垂直分辨率,将ACE-FTS测量值平滑到PEARL-FTS或TANSO-FTS的分辨率,将PEARL-FTS测量值平滑到TANSO-FTS分辨率。根据配置文件和部分列检查每对的差异。在所考虑的时间段内,每对的并置数量足够大以获得良好的样本大小(从几百到几万,取决于对和配置)。考虑到完整的轮廓,TANSO-FTS的信号自由度(DOFS)在0.2至0.7之间,而PEARL-FTS的信号自由度在1.5与3之间,而ACE-FTS具有更多的信息(每个海拔高度大约1?DOFS)。对于ACE-FTS-PEARL-FTS比较,我们采用大约5至30?km之间的分列,而其他对则采用5至10?km之间的分列。对于与ACE-FTS并置的PEARL-FTS,部分列的DOFS在1.2和2之间,对于与TANSO-FTS并置的PEARL-FTS在0.1和0.5之间,而ACE-FTS具有更高的信息含量。对于所有对,部分列差异在±3π×?10 22 ?分子?cm − 2 之内。表示为中位数绝对值±中位数绝对偏差(以部分列单位或百分比表示),这些差异为0.11?±?9.60 ??×?10 20 ?分子?cm &minus ; TANSO-FTS–PEARL-FTS的; 2 (0.012?±?1.018?%),&min ;; 2.6?±?2.6?×?10 21 ?? cm &minus ; ACE-FTS–PEARL-FTS的; 2 (&min ;; 1.6?±?1.6?%)和7.4?±?6.0?×?10 20 ?分子?cm (0.78?±?0.64?%)。 ACE-FTS–PEARL-FTS和TANSO-FTS–PEARL-FTS部分色谱柱的差异随着PEARL部分色谱柱的功能而显着减小,而TANSO-FTS–ACE-FTS组合的部分色谱柱值的范围太小就其对ACE-FTS部分色谱柱的依赖性得出任何结论。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号