首页> 外文期刊>Atmospheric chemistry and physics >The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
【24h】

The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds

机译:云凝结核和冰核颗粒浓度对北极混合相层积云中相分配的相对影响

获取原文
获取外文期刊封面目录资料

摘要

This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.
机译:这项研究调查了2015年4月在阿拉斯加的Oliktok Point观测到的北极混合相平流层积云(AMPS)的理想大涡模拟(LES)中云动力学与气溶胶之间的相互作用。之所以选择该案例,是因为它可以使云响应于从无云状态开始的辐射冷却而形成,而不是需要将云冰和液体调节至初始浑浊状态。敏感性研究用于确定是否存在缓冲反馈,这些反馈限制了气溶胶扰动的影响。这项研究的结果表明,冰核颗粒(INPs)的扰动比云凝结核(CCN)的扰动更重要。即,即使液滴的有效半径增加并且云的发射率降低,CCN和INP的等价的分数减小也会导致云顶长波冷却速率的增加。冰在模拟的混合相云中的主要作用是变薄而不是冰川消融,从而导致混合相云以灰色体的形式辐射,并且云的辐射特性对气溶胶扰动更为敏感。结果表明,允许预后的CCN和INP导致气溶胶分层,云顶上方的CCN浓度增加,而云驱动混合层底部的INP浓度增加。这种分层有助于维护云液体,从而推动了云系统的动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号