...
首页> 外文期刊>Atmospheric chemistry and physics >Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign
【24h】

Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

机译:在MCMA-2006 / MILAGRO活动期间,使用WRF-CHEM模型模拟墨西哥城中的有机气溶胶浓度

获取原文
           

摘要

Organic aerosol concentrations are simulated using theWRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches areemployed to predict the variation and spatial distribution of the organicaerosol concentrations: (1) a traditional 2-product secondary organic aerosol(SOA) model with non-volatile primary organic aerosols (POA); (2) anon-traditional SOA model including the volatility basis-set modeling methodin which primary organic components are assumed to be semi-volatile andphotochemically reactive and are distributed in logarithmically spacedvolatility bins. The MCMA (Mexico City Metropolitan Area) 2006 officialemission inventory is used in simulations and the POA emissions are modifiedand distributed by volatility based on dilution experiments for thenon-traditional SOA model. The model results are compared to the AerosolMass Spectrometry (AMS) observations analyzed using the Positive MatrixFactorization (PMF) technique at an urban background site (T0) and asuburban background site (T1) in Mexico City. The traditional SOA modelfrequently underestimates the observed POA concentrations during rush hoursand overestimates the observations in the rest of the time in the city. Themodel also substantially underestimates the observed SOA concentrations,particularly during daytime, and only produces 21% and 25% of theobserved SOA mass in the suburban and urban area, respectively. Thenon-traditional SOA model performs well in simulating the POA variation, butstill overestimates during daytime in the urban area. The SOA simulationsare significantly improved in the non-traditional SOA model compared to thetraditional SOA model and the SOA production is increased by more than100% in the city. However, the underestimation during daytime is stillsalient in the urban area and the non-traditional model also fails toreproduce the high level of SOA concentrations in the suburban area. In thenon-traditional SOA model, the aging process of primary organic componentsconsiderably decreases the OH levels in simulations and further impacts theSOA formation. If the aging process in the non-traditional model does nothave feedback on the OH in the gas-phase chemistry, the SOA production isenhanced by more than 10% compared to the simulations with the OHfeedback during daytime, and the gap between the simulations andobservations in the urban area is around 3 μg m?3 or 20% onaverage during late morning and early afternoon, within the uncertainty fromthe AMS measurements and PMF analysis. In addition, glyoxal andmethylglyoxal can contribute up to approximately 10% of the observed SOAmass in the urban area and 4% in the suburban area. Including the non-OHfeedback and the contribution of glyoxal and methylglyoxal, thenon-traditional SOA model can explain up to 83% of the observed SOA inthe urban area, and the underestimation during late morning and earlyafternoon is reduced to 0.9 μg m?3 or 6% on average.Considering the uncertainties from measurements, emissions, meteorologicalconditions, aging of semi-volatile and intermediate volatile organiccompounds, and contributions from background transport, the non-traditionalSOA model is capable of closing the gap in SOA mass between measurements andmodels.
机译:在3月24日至29日期间,结合MILAGRO-2006运动,使用WRF-CHEM模型在墨西哥城模拟了有机气溶胶浓度。采用两种方法来预测有机气溶胶浓度的变化和空间分布:(1)传统的带有非挥发性初级有机气溶胶(POA)的2产品二次有机气溶胶(SOA)模型; (2)非传统的SOA模型,包括挥发性基集建模方法,在该模型中,主要有机成分被假定为半挥发性和光化学反应性,并分布在对数间隔的挥发性区域中。在模拟中使用了MCMA(墨西哥城都会区)2006年官方排放清单,并基于非传统SOA模型的稀释实验,通过波动率修改和分配了POA排放量。将模型结果与在墨西哥城的城市背景站点(T0)和郊区背景站点(T1)使用正矩阵因子化(PMF)技术分析的气溶胶质谱(AMS)观测结果进行比较。传统的SOA模型经常会低估高峰时段观察到的POA浓度,而高估城市其余时间的观察值。该模型还大大低估了所观察到的SOA浓度,尤其是在白天,并且仅产生了郊区和城市地区所观察到的SOA量的21%和25%。非传统的SOA模型在模拟POA变化方面表现良好,但在白天却仍然高估了市区内的水平。与传统SOA模型相比,非传统SOA模型中的SOA模拟得到了显着改善,并且该市中SOA的产量增加了100%以上。然而,白天的低估在城市地区仍然存在,并且非传统模型也无法再现郊区的高水平SOA浓度。在非传统的SOA模型中,主要有机组分的老化过程在模拟中显着降低了OH的含量,并进一步影响了SOA的形成。如果非传统模型中的老化过程没有对气相化学中的OH进行反馈,则与白天使用OHfeedback进行的模拟相比,SOA的产量提高了10%以上,并且模拟和观测之间的差距在AMS测量和PMF分析所带来的不确定性的影响下,市区在早晚和午后平均约为3μgm 3 或平均20%。此外,乙二醛和甲基乙二醛在市区和郊区约占总观测SOA量的10%。包括非OH反馈以及乙二醛和甲基乙二醛的贡献在内,非传统的SOA模型可以解释多达83%的市区SOA观测值,并且在清晨和午后的低估时减少到0.9μgm ?平均3%或6%。考虑到测量,排放,气象条件,半挥发性和中等挥发性有机化合物的老化以及背景迁移的影响等不确定因素,非传统SOA模型能够弥补SOA中的空白测量和模型之间的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号