...
首页> 外文期刊>Atmospheric chemistry and physics >Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals
【24h】

Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals

机译:大气微波吸收模型的不确定性:对地面辐射计模拟和检索的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a general approach to quantify absorption model uncertainty due to uncertainty in the underlying spectroscopic parameters. The approach is applied to a widely used microwave absorption model (Rosenkranz, 2017) and radiative transfer calculations in the 20–60?GHz range, which are commonly exploited for atmospheric sounding by microwave radiometer (MWR). The approach, however, is not limited to any frequency range, observing geometry, or particular instrument. In the considered frequency range, relevant uncertainties come from water vapor and oxygen spectroscopic parameters. The uncertainty of the following parameters is found to dominate: (for water vapor) self- and foreign-continuum absorption coefficients, line broadening by dry air, line intensity, the temperature-dependence exponent for foreign-continuum absorption, and the line shift-to-broadening ratio; (for oxygen) line intensity, line broadening by dry air, line mixing, the temperature-dependence exponent for broadening, zero-frequency line broadening in air, and the temperature-dependence coefficient for line mixing. The full uncertainty covariance matrix is then computed for the set of spectroscopic parameters with significant impact. The impact of the spectroscopic parameter uncertainty covariance matrix on simulated downwelling microwave brightness temperatures ( TsubB/sub ) in the 20–60?GHz range is calculated for six atmospheric climatology conditions. The uncertainty contribution to simulated TsubB/sub ranges from 0.30?K (subarctic winter) to 0.92?K (tropical) at 22.2?GHz and from 2.73?K (tropical) to 3.31?K (subarctic winter) at 52.28?GHz. The uncertainty contribution is nearly zero at 55–60?GHz frequencies. Finally, the impact of spectroscopic parameter uncertainty on ground-based MWR retrievals of temperature and humidity profiles is discussed.
机译:本文提出了一种用于量化由于潜在光谱参数不确定性而引起的吸收模型不确定性的通用方法。该方法适用于广泛使用的微波吸收模型(Rosenkranz,2017)和20–60?GHz范围内的辐射传输计算,微波辐射计(MWR)通常将其用于大气探测。然而,该方法不限于任何频率范围,观察几何形状或特定仪器。在所考虑的频率范围内,相关的不确定性来自水蒸气和氧气光谱参数。已发现以下参数的不确定性占主导地位:(对于水蒸气而言)自我和异物连续吸收系数,干燥空气引起的谱线展宽,谱线强度,异物连续吸收的温度相关指数以及谱线偏移-扩大比例; (对于氧气)线强度,通过干燥空气进行的线展宽,线混合,线展的温度相关指数,空气中零频线展宽以及线混合的温度相关系数。然后,对具有显着影响的光谱参数集计算完全不确定性协方差矩阵。针对六个大气气候条件,计算了光谱参数不确定性协方差矩阵对模拟下流微波亮度温度(T B )在20–60?GHz范围内的影响。对模拟T B 的不确定性贡献在22.2 GHz时从0.30?K(南亚冬季)到0.92?K(热带),从2.73?K(热带)至3.31?K(南冬季)。在52.28 GHz。在55–60?GHz频率下,不确定性贡献几乎为零。最后,讨论了光谱参数不确定性对地面MWR温度和湿度剖面反演的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号