...
首页> 外文期刊>Atmospheric chemistry and physics >Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling
【24h】

Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling

机译:南极东部雪和大气中硝酸盐稳定同位素信号中的光解印迹及其对活性氮循环的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The nitrogen (δ15N) and triple oxygen (δ17O andδ18O) isotopic composition of nitrate (NO3−) was measuredyear-round in the atmosphere and snow pits at Dome C, Antarctica(DC, 75.1° S, 123.3° E), and in surface snow on a transectbetween DC and the coast. Comparison to the isotopic signal in atmosphericNO3− shows that snow NO3− is significantly enriched inδ15N by >200‰ and depleted in δ18O by<40‰. Post-depositional fractionation in Δ17O(NO3−)is small, potentially allowing reconstruction of past shifts in tropospheric oxidationpathways from ice cores. Assuming a Rayleigh-type process we find fractionationconstants ε of −60±15‰, 8±2‰ and1±1‰, for δ15N, δ18O and Δ17O,respectively. A photolysis model yields an upper limit for the photolyticfractionation constant 15ε of δ15N, consistentwith lab and field measurements, and demonstrates a high sensitivity of15ε to the incident actinic flux spectrum. The photolytic15ε is process-specific and therefore applies to any snowcovered location. Previously published 15ε values arenot representative for conditions at the Earth surface, but apply only to theUV lamp used in the reported experiment (Blunier et al., 2005; Jacobi et al., 2006).Depletion of oxygen stable isotopes is attributed to photolysis followed byisotopic exchange with water and hydroxyl radicals. Conversely, 15Nenrichment of the NO3− fraction in the snow implies 15N depletionof emissions. Indeed, δ15N in atmospheric NO3− shows a strongdecrease from background levels (4±7‰) to −35‰in spring followed by recovery during summer, consistent withsignificant snowpack emissions of reactive nitrogen. Field andlab evidence therefore suggest that photolysis is an important processdriving fractionation and associated NO3− loss from snow.The Δ17O signature confirms previous coastal measurements thatthe peak of atmospheric NO3− in spring is of stratospheric origin.After sunrise photolysis drives then redistribution of NO3− from thesnowpack photic zone to the atmosphere and a snow surface skin layer,thereby concentrating NO3− at the surface. Little NO3− appears tobe exported off the EAIS plateau, still snow emissions from as far as 600 kminland can contribute to the coastal NO3− budget.
机译:硝酸盐的氮(δ 15 N)和三重氧(δ 17 O和δ 18 O)的同位素组成(NO 3 < / sub> -)全年在南极Dome C的大气和雪坑中测量(DC,75.1°S,123.3°E),并在DC和海岸之间的横断面上测量地表雪。与大气中NO 3 -的同位素信号的比较表明,雪NO 3 -的雪中δ明显富集15 N> 200‰,δ 18 O <40‰。 Δ 17 O(NO 3 -)中的沉积后分馏很小,有可能重建冰芯对流层氧化途径过去的偏移。假设瑞利型过程,对于δ 15 N,δ 18 O和Δ,我们发现分馏常数ε为−60±15‰,8±2‰和1±1‰。 17 O分别。光解模型产生了δ 15 N的光解分数常数 15 ε的上限,与实验室和现场测量结果一致,并证明了 15 的高灵敏度。大于入射光化通量谱光解 15 ε是特定于过程的,因此适用于任何积雪的位置。先前发布的 15 ε值不能代表地球表面的状况,而仅适用于已报道的实验中使用的UV灯(Blunier等,2005; Jacobi等,2006)。氧稳定同位素归因于光解,然后与水和羟基自由基进行同位素交换。相反,雪中NO 3 -部分的 15 富集意味着排放物中 15 N的消耗。实际上,大气NO 3 -中的δ 15 N在春季从背景水平(4±7‰)强烈降低至-35‰。通过夏季的恢复,与积雪中大量的反应性氮排放相一致。因此,现场和实验室证据表明光解是驱动过程的重要分馏过程,并伴随着雪中NO 3 -的损失.Δ 17 O签名证实了以前的沿海地区测量春季的大气NO 3 -的峰值是平流层起源。日出光解驱动后,NO 3 -<的重新分布/ sup>从雪层的光合带到大气和雪表面的皮层,从而使NO 3 -集中在地表。似乎很少有NO 3 -出口到EAIS高原以外,高达600公里的内陆仍然有积雪排放,这可能是沿海NO 3 < sup>-预算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号