首页> 外文期刊>Atmospheric chemistry and physics >Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by iα/i-pinene ozonolysis without inorganic salts
【24h】

Observations and implications of liquid–liquid phase separation at high relative humidities in secondary organic material produced by iα/i-pinene ozonolysis without inorganic salts

机译:在没有无机盐的情况下在高相对湿度下由α -pine烯臭氧分解产生的次级有机物质中液相-液相分离的观察和意义

获取原文
           

摘要

Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of iα/i-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290?K and for relative humidities ranging from ?&??0.5 to 100?%. In the laboratory studies, a single phase was observed from 0 to 95?% relative humidity (RH) while two liquid phases were observed above 95?% RH. For increasing RH, the mechanism of liquid–liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated K?hler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the K?hler curve when the particles are water rich.
机译:大气中富含由次要有机材料(SOM)组成的颗粒。为了预测这些粒子在气候,能见度和大气化学中的作用,需要有关粒子相态(即单一液体,两种液体和固体)的信息。本文着眼于不含由α -pine烯的臭氧分解产生的无机盐的SOM颗粒的相态。在实验室中使用光学显微镜研究了相变,并且理论上使用了在290?K的热力学模型并且相对湿度在≤0.5到100%的范围内进行了研究。在实验室研究中,在相对湿度(RH)为0至95%的条件下观察到一个单相,而在95%(相对)的RH之上观察到两个液相。为了增加相对湿度,液相-液相分离(LLPS)的机理是旋节线分解。观察到两个液相的RH范围不取决于RH变化的方向。在建模研究中,SOM吸收的水非常少,并且是相对湿度较低的单一富含有机物的相。在高相对湿度下,与实验室研究一致,SOM经过LLPS形成富含有机物的相和富含水的相。高RH值下LLPS的存在可能会对SOM粒子的云凝结核(CCN)活性产生影响。在SOM粒子的模拟K?hler曲线中,观察到两个局部最大值。根据SOM的组成,第一最大值或第二最大值可以确定激活的临界过饱和度。最近,研究人员观察到SOM颗粒的CCN特性与低于水饱和度时测得的吸湿性增长之间存在矛盾(即,低于水饱和度时测得的吸湿性参数与高于水饱和度时测得的吸湿性参数不一致)。本文介绍的工作表明,当饱和条件下的吸水率代表富含有机物相的吸湿性,而CCN活化的障碍可以由K?hler曲线中的第二个最大值确定时,LLPS系统会出现这种不一致现象。颗粒富含水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号