首页> 外文期刊>Atmospheric chemistry and physics >Modeling the formation and composition of secondary organic aerosol from diesel exhaust using parameterized and semi-explicit chemistry and thermodynamic models
【24h】

Modeling the formation and composition of secondary organic aerosol from diesel exhaust using parameterized and semi-explicit chemistry and thermodynamic models

机译:使用参数化,半显性化学和热力学模型对柴油机废气中次级有机气溶胶的形成和组成进行建模

获取原文
           

摘要

Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can be photooxidized in the atmosphere to form secondary organic aerosol?(SOA). In some cases, this SOA can exceed direct emissions of primary organic aerosol?(POA). Jathar et al.?(2017a) recently reported on experiments that used an oxidation flow reactor?(OFR) to measure the photochemical production of SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel), and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this work, we used two different SOA models, the Volatility Basis Set?(VBS) model and the Statistical Oxidation Model?(SOM), to simulate the formation and composition of SOA for those experiments. Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and reactive POA; SOA production from semi-volatile, intermediate-volatility, and volatile organic compounds (SVOC, IVOC and VOC); NOsubx/sub-dependent parameterizations; multigenerational gas-phase chemistry; and kinetic gas–particle partitioning. Both frameworks demonstrated that for model predictions of SOA mass to agree with measurements across all engine load–fuel–aftertreatment combinations, it was necessary to model the kinetically limited gas–particle partitioning in OFRs and account for SOA formation from IVOCs, which were on average found to account for 70 % of the model-predicted SOA. Accounting for IVOCs, however, resulted in an average underprediction of 28 % for OA atomic O : C ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) from the SOM compared favorably to gas-phase measurements from a chemical ionization mass spectrometer?(CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model–measurement comparisons were improved on using SOA parameterizations corrected for vapor wall loss. As OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, models such as those developed in this work can be used to interpret the OFR data.
机译:基于实验室的研究表明,燃烧源排放的挥发性有机化合物可在大气中被光氧化而形成二次有机气溶胶(SOA)。在某些情况下,这种SOA可能超过主要有机气溶胶(POA)的直接排放量。 Jathar等人(2017a)最近报告了一项实验,该实验使用氧化流反应器(OFR)来测量在两种不同的发动机负荷(怠速,负荷),两种燃料类型(柴油)下运行的柴油发动机的SOA的光化学生成,生物柴油)和两种后处理配置(带有和不带有氧化催化剂和颗粒过滤器)。在这项工作中,我们使用了两个不同的SOA模型,即波动基础集(VBS)模型和统计氧化模型(SOM),来模拟这些实验中SOA的形成和组成。利用最近基于实验室的参数设置,这两个框架都构成了半挥发性和反应性POA。由半挥发性,中等挥发性和挥发性有机化合物(SVOC,IVOC和VOC)生产SOA; NO x 依赖的参数化;多代气相化学;以及动气-颗粒分配。这两个框架都表明,要使SOA质量的模型预测与所有发动机负荷-燃料-后处理组合的测量结果吻合,就必须对OFR中动力学受限的气体-颗粒分配进行建模,并考虑IVOC中SOA的形成,这是平均水平被发现占模型预测的SOA的70%。但是,考虑到IVOC,导致OA原子O:C比率的平均低估了28%。通过SOM预测的气相有机化合物(溶解在碳和氧空间中)的模型预测与化学电离质谱仪(CIMS)进行的气相测量相比具有优势,证实了SOM捕获的半显性化学反应。使用校正了蒸气壁损耗的SOA参数化可以改善模型与测量的比较。随着OFR越来越多地用于研究实验室和现场环境中SOA的形成和演化,可以使用诸如在本工作中开发的模型来解释OFR数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号