首页> 外文期刊>Atmospheric chemistry and physics >Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table
【24h】

Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

机译:使用机器学习算法,非线性回归和基于辐射转移的查找表从表面太阳辐射测量值中检索气溶胶光学深度

获取原文
           

摘要

In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during the observation period.
机译:为了对人为气溶胶当前的强迫有一个很好的估计,需要有关过去气溶胶水平的知识。气溶胶光学深度(AOD)是衡量气溶胶负载的好方法。但是,只有从1990年代起才能进行AOD的专用测量。将AOD时间序列延长到1990年代以后的一种选择是从用总辐射表进行的地面太阳辐射(SSR)测量中检索AOD。在这项工作中,我们评估了为此任务设计的几种反演方法。我们将基于辐射传输建模的查找表方法,非线性回归方法和四种机器学习方法(高斯过程,神经网络,随机森林和支持向量机)与在太阳光度计上进行的AOD观测进行了比较。希腊塞萨洛尼基的气溶胶机器人网络(AERONET)站点。我们的结果表明,大多数机器学习方法产生的AOD估计值与查找表和非线性回归方法相当。所有应用的方法产生的AOD值都与AERONET观测值非常吻合,对于随机森林方法,最低相关系数值为0.87。尽管许多方法倾向于略微高估低AOD值而低估高AOD值,但神经网络和支持向量机在整个AOD范围内显示出总体较好的对应性。产生AOD范围两端的差异似乎是由气溶胶成分的差异引起的。在大多数情况下,高AOD是那些水蒸气含量高的水,它们可能通过将水吸收到气溶胶中而影响气溶胶单散射反照率(SSA)。我们的研究表明,机器学习方法得益于以下事实:它们在检索中不限制气溶胶SSA,而LUT方法为此假设一个恒定值。这也意味着即使在观察期内SSA发生了变化,机器学习方法也可能具有从SSR复制AOD的潜力。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号