首页> 外文期刊>Atmospheric chemistry and physics >Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
【24h】

Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

机译:大气化学与气候模式比对项目(ACCMIP)对工业前至当今黑碳及其反照率的评估

获取原文
           

摘要

As part of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP), we evaluate the historical black carbon (BC) aerosolssimulated by 8 ACCMIP models against observations including 12 ice corerecords, long-term surface mass concentrations, and recent Arctic BCsnowpack measurements. We also estimate BC albedo forcing by performingadditional simulations using offline models with prescribed meteorology from1996–2000. We evaluate the vertical profile of BC snow concentrations fromthese offline simulations using the recent BC snowpack measurements.Despite using the same BC emissions, the global BC burden differs byapproximately a factor of 3 among models due to differences in aerosolremoval parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850and 82 Gg to 315 Gg in 2000. However, the global BC burden frompreindustrial to present-day increases by 2.5–3 times with little variationamong models, roughly matching the 2.5-fold increase in total BC emissionsduring the same period. We find a large divergence among models at bothNorthern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regionsfor BC burden and at SH high latitude regions for deposition fluxes. TheACCMIP simulations match the observed BC surface mass concentrations well inEurope and North America except at Ispra. However, the models fail topredict the Arctic BC seasonality due to severe underestimations duringwinter and spring. The simulated vertically resolved BC snow concentrationsare, on average, within a factor of 2–3 of the BC snowpack measurementsexcept for Greenland and the Arctic Ocean.For the ice core evaluation, models tend to adequately capture both theobserved temporal trends and the magnitudes at Greenland sites. However,models fail to predict the decreasing trend of BC depositions/ice coreconcentrations from the 1950s to the 1970s in most Tibetan Plateau icecores. The distinct temporal trend at the Tibetan Plateau ice coresindicates a strong influence from Western Europe, but the modeled BCincreases in that period are consistent with the emission changes in EasternEurope, the Middle East, South and East Asia. At the Alps site, thesimulated BC suggests a strong influence from Europe, which agrees with theAlps ice core observations. At Zuoqiupu on the Tibetan Plateau, modelssuccessfully simulate the higher BC concentrations observed during thenon-monsoon season compared to the monsoon season but overpredict BC in bothseasons. Despite a large divergence in BC deposition at two Antarctic icecore sites, some models with a BC lifetime of less than 7 days are able tocapture the observed concentrations.In 2000 relative to 1850, globally and annually averaged BC surface albedoforcing from the offline simulations ranges from 0.014 to 0.019 W m?2among the ACCMIP models. Comparing offline and online BC albedo forcingscomputed by some of the same models, we find that the global annual mean canvary by up to a factor of two because of different aerosol models ordifferent BC-snow parameterizations and snow cover. The spatialdistributions of the offline BC albedo forcing in 2000 show especially highBC forcing (i.e., over 0.1 W m?2) over Manchuria, Karakoram, and mostof the Former USSR. Models predict the highest global annual mean BC forcingin 1980 rather than 2000, mostly driven by the high fossil fuel and biofuelemissions in the Former USSR in 1980.
机译:作为大气化学和气候模式比对项目(ACCMIP)的一部分,我们对8种ACCMIP模型所模拟的历史黑碳(BC)气溶胶进行了评估,并与包括12个冰芯记录,长期表面质量浓度和近期北极BCsnowpack测量结果的观测结果进行了比较。我们还通过使用具有规定气象学的离线模型(1996-2000年)执行附加模拟来估算BC反照率。我们使用最近的BC积雪测量,从这些离线模拟中评估BC积雪浓度的垂直分布。 尽管使用相同的BC排放量,但由于气溶胶去除参数设置的差异,模型中的全球BC负担大约相差3倍。模拟气象学:1850年为34 Gg至103 Gg,2000年为82 Gg至315 Gg。但是,从工业化到当今的全球BC负担增加了2.5–3倍,模型间几乎没有变化,大致与总量增加了2.5倍相称同期的卑诗省排放量。我们发现北半球(NH)和南半球(SH)高纬度地区的BC负荷和SH高纬度地区的沉积通量之间存在较大差异。 ACCMIP模拟与在欧洲和北美(除Ispra以外)观察到的BC表面质量浓度非常匹配。但是,由于冬季和春季严重低估了这些模型,因此无法预测北极的BC季节。除格陵兰和北冰洋外,模拟的垂直分解的BC雪浓度平均平均在BC雪积测量值的2-3倍之内。格陵兰站点的趋势和规模。但是,模型无法预测大多数青藏高原冰芯从1950年代到1970年代BC沉积/冰芯浓度的下降趋势。青藏高原冰芯的明显时空趋势表明了来自西欧的强烈影响,但该时期的模拟BC增长与东欧,中东,南亚和东亚的排放变化一致。在阿尔卑斯山地区,模拟的卑诗省表明了来自欧洲的强大影响力,这与阿尔卑斯山冰芯观测结果一致。在青藏高原左丘铺,模型成功地模拟了非季风季节比季风季节观测到的更高的BC浓度,但是两个季节的BC均过高。尽管两个南极冰芯地点的BC沉积差异很大,但某些BC寿命小于7天的模型仍能够捕获到所观测到的浓度。 2000年相对于1850年,全球和年平均BC表面反照率在ACCMIP模型中,离线仿真的范围从0.014到0.019 W m ?2 。比较由某些相同模型计算的离线和在线BC反照率强迫,我们发现,由于不同的气溶胶模型或不同的BC雪参数化和积雪,全球年平均变化量最多可达2倍。离线BC反照率强迫在2000年的空间分布显示满洲,喀喇昆仑山脉和前苏联大部分地区的BC强迫特别高(即超过0.1 W m ?2 )。模型预测,1980年而不是2000年的全球年均BC强迫最高,这主要是由1980年前苏联的化石燃料和生物燃料排放量较高所致。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号