首页> 外文期刊>Applied Sciences >Local, Story, and Global Ductility Evaluation for Complex 2D Steel Buildings: Pushover and Dynamic Analysis
【24h】

Local, Story, and Global Ductility Evaluation for Complex 2D Steel Buildings: Pushover and Dynamic Analysis

机译:复杂2D钢结构建筑物的局部,故事和全局延性评估:推覆和动态分析

获取原文
获取外文期刊封面目录资料

摘要

A numerical investigation regarding ductility evaluation of steel buildings with moment resisting steel frames is conducted. Bending ( μ L? ) and tension ( μ Lδ ) local ductilities as well as story ( μ S ) and global ductilities are studied. Global ductility is calculated as the mean values of story ductilities ( μ GS ) and as the ratio of the maximum inelastic to yielding top displacements ( μ Gt ). The ductility capacity is associated to drifts of about 5%. Ductility values significantly may vary with the strong motion, ductility definition, structural element, story number, type of analysis, and model. μ L? is much larger for beams than for columns. Even though the demands of μ Lδ are considered an important issue they are less relevant than μ L? . μ S is much smaller than μ L? for beams. μ GS for dynamic analysis give reasonable values, but μ Gt does not. μ L? , μ S and μ GS obtained from pushover are larger than those obtained from dynamic analysis and unlike the case of dynamic analysis, μ L? tend to increase with the story number showing an opposite trend. Considering that: μ Gt for dynamic analysis results in unreasonable values, pushover analysis does not consider energy dissipation, the strong column–weak beam (SCWB) concept was followed in the model designs, and μ Lδ is not relevant in framed steel buildings, the ratio ( R LG ) of global to local ductility capacity is calculated as the ratio of μ GS to μ L? of beams, for dynamic analysis. A value of 1/3 is proposed. Thus, if bending local ductility capacity is stated as the basis for the design, the global ductility capacity can be easily estimated.
机译:进行了有关抗弯钢框架钢建筑物延性评估的数值研究。研究了弯曲度(μL?)和张力(μLδ)的局部延性以及故事层(μS)和整体延性。整体延展性是作为楼层延展性的平均值(μGS)和最大无弹性与产生的顶部位移的比率(μGt)来计算的。延展能力与约5%的漂移相关。延性值可能会因剧烈运动,延性定义,结构元素,层数,分析类型和模型而显着不同。升?梁比柱子大得多。即使μLδ的要求被认为是一个重要问题,但与μLδ相比,相关性较小。 。 μS比μL小得多。对于梁。用于动态分析的μGS给出了合理的值,但μGt却没有。升? ,从推覆获得的μS和μGS大于从动态分析获得的μS和μGS,与动态分析的情况不同,μL?往往随着故事数量的相反趋势而增加。考虑到:用于动态分析的μGt得出不合理的值,推覆分析未考虑能耗,在模型设计中遵循了强柱弱梁(SCWB)的概念,而μLδ在框架式钢结构建筑中不相关,整体延展性与局部延展性的比值(R LG)计算为μGS与μL?光束,用于动态分析。建议值为1/3。因此,如果将弯曲局部延性能力作为设计的基础,则可以容易地估计整体延性能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号