...
首页> 外文期刊>Applied Physics Research >Particle limiting velocities from the bicubic equation derived from Einstein’s kinematics: PeV electron case
【24h】

Particle limiting velocities from the bicubic equation derived from Einstein’s kinematics: PeV electron case

机译:来自爱因斯坦运动学的双三次方程式的粒子极限速度:PeV电子情况

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Here one reviews the particle limiting velocities derived from the Einstein’s kinematic generated bicubic equation: c1, the primary limiting velocity, c2, the obscure limiting velocity and c3, the normal limiting velocity. While c1 and c3 are real c2 is imaginary. Each of these limiting velocities depend on particle physics parameters of energy, E, mass, m, and ordinary velocity, v in such a way that c21 , c22 and c23 are all related to each other by simple transforms, leaving invariant the zero sum rule, c21 + c22+ c23= 0. As such, they form the bicubic particle kinematics. Now for the problem at hand, the limiting velocities are calculated specifically for the 0.5 MeV mass electron in the PeV energy region from the 2010 Crab Nebula Flare. Of the three solutions, c1; c2 and c3 one finds c1 to be very large and likely unphysical, similarly imaginary c2 with very large absolute value also likely unphysical and both of them Lorentz violating (LV), while the calculated normal limiting velocity c3 has acceptable values in this high energy case. With the electron energy in the PeV region, the electron mass has very little influence on c3. Even so one calculates miniscule subluminal and superluminal Lorentz violations, when respectively c3 ? c and c3 ? c, and the Lorentz invariance (LI) when the evaluation yields c3 = c. Qualitatively, because of miniscule masses, the calculated electron limiting velocity due to the Crab Nebula Flare PeV events shows great deal of similarities with the calculated neutrino limiting velocity from the OPERA neutrino velocity experiments. To get bigger mass effects on limiting velocities, one needs to go from the energy region E ? mc2 to the energy region E ? mc2 . With this, one would see whether in the lower energy region one has also c3 ? O(c) with LI and LV small portions. Also lower energy electron velocities, may even provide physical reasons for the existance or non-existance of c1 and c2.
机译:在这里,我们回顾了从爱因斯坦运动学生成的三次方程得出的粒子极限速度:c1,主要极限速度c2,模糊极限速度,c3,法向极限速度。当c1和c3是实数时,c2是虚构的。这些极限速度中的每一个都取决于能量,E,质量,m和常规速度v的粒子物理参数,以使c21,c22和c23都通过简单的变换相互关联,从而始终保持零和规则,c21 + c22 + c23 =0。因此,它们形成了双三次粒子运动学。现在针对当前问题,极限速度是根据2010年蟹状星云耀斑在PeV能量区域中专门针对0.5 MeV质量电子计算的。在这三个解中,c1; c2和c3会发现c1很大并且很可能是非物理的,类似的虚构c2的绝对值也很大,也很可能是非物理的,并且两者都洛伦兹违反(LV),而在这种高能量情况下,计算出的法向极限速度c3可以接受。由于电子能量在PeV区域,电子质量对c3的影响很小。即使这样,当分别为c3≤r3时,也可以计算出微腔内和超腔内的Lorentz违规。 c和c3? c和洛伦兹不变性(LI),当评估得出c3 = c时。定性地,由于质量很小,由蟹状星云耀斑PeV事件引起的计算出的电子极限速度与从OPERA中微子速度实验计算出的中微子极限速度有很多相似之处。为了在限制速度上获得更大的质量效应,需要从能量区域E?开始。 mc2到能量区E? mc2。这样一来,就会看到在较低能量区域中是否也有c3? O(c)具有LI和LV小部分。同样,较低能量的电子速度甚至可能提供c1和c2存在或不存在的物理原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号