首页> 外文期刊>Applied Sciences >An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations
【24h】

An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

机译:紧急制动情况下多轴重型车辆气动制动系统滞后特性的实验研究

获取原文
           

摘要

This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs). Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.
机译:这项研究旨在研究用于多轴重型车辆(MHV)的气动制动系统的磁滞特性。迟滞会严重影响紧急制动性能。与普通的两轴车辆相比,MHV具有大尺寸和复杂的结构这一事实导致气动制动系统具有更多的非线性耦合特性。因此,在研究磁滞现象时,理论分析和仿真还不够。在本文中,基于新型试验台,研究了八轴车辆在紧急制动情况下的气动制动系统的滞后现象。伺服驱动装置被用于模拟驾驶员的制动强度,通常用制动踏板的打开或移动速度来表示。通过合理布置传感器和NI LabVIEW平台,可以实时检测八个回路的延迟时间以及单个回路中每个子组件的响应时间。实验结果表明,每个循环的延迟时间随着踏板开度的增加而变长,并且它们之间存在二次关系。基于此,将系统中的压力瞬变拟合为一阶加时延模型。此外,踏板阀和控制管路的响应时间占回路总延迟时间的80%以上,这表明这两个子组件是造成滞后效应的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号