首页> 外文期刊>Analytical methods >Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes
【24h】

Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes

机译:让芯片化—迈向微流控设备的快速原型设计:一步制造流程

获取原文
           

摘要

Microfluidics is an evolving scientific field with immense commercial potential: analytical applications, such as biochemical assay development, biochemical analysis and biosensors as well as chemical synthesis applications essentially require microfluidics for sample handling, treatment or readout. A number of techniques are available to create microfluidic structures today. On industrial scale replication techniques such as injection molding are the gold standard whereas academic research mostly focuses on replication by casting of soft elastomers such as polydimethylsiloxane (PDMS). Both of these techniques require the creation of a replication master thus creating the microfluidic structure only in the second process step—they can therefore be termed two-(or multi-)step manufacturing techniques. However, very often the number of pieces to be created of one specific microfluidic design is low, sometimes even as low as one. This raises the question if two-step manufacturing is an appropriate choice, particularly if short concept-to-chip times are required. In this case one-step manufacturing techniques that allow the direct creation of microfluidic structures from digital three-dimensional models are preferable. For these processes the number of parts per design is low (sometimes as low as one), but quick adaptation is possible by simply changing digital data. Suitable techniques include, among others, maskless or mask based stereolithography, fused deposition molding and 3D printing. This work intends to discuss the potential and application examples of such processes with a detailed view on applicable materials. It will also point out the advantages and the disadvantages of the respective technique. Furthermore this paper also includes a discussion about non-conventional manufacturing equipment and community projects that can be used in the production of microfluidic devices...
机译:微流体技术是一个正在发展的科学领域,具有巨大的商业潜力:分析应用程序(例如生化分析开发,生化分析和生物传感器以及化学合成应用程序)本质上需要微流体来进行样品处理,处理或读出。今天,有许多技术可用于创建微流体结构。在工业规模上,复制技术(例如注塑成型)是金标准,而学术研究则主要集中在通过铸造软弹性体(例如聚二甲基硅氧烷(PDMS))进行复制。这两种技术都需要创建复制母版,因此仅在第二个处理步骤中才创建微流体结构,因此可以将其称为两步(或多步)制造技术。但是,一种特定的微流体设计通常要制造的零件数量很少,有时甚至只有一个。这就提出了一个问题,即两步制造是否合适,特别是如果需要较短的概念到芯片时间。在这种情况下,允许从数字三维模型直接创建微流体结构的一步制造技术是可取的。对于这些过程,每个设计的零件数量很低(有时低至一个),但是只需更改数字数据即可实现快速适应。合适的技术尤其包括基于无掩模或基于掩模的立体光刻,熔融沉积成型和3D打印。这项工作旨在讨论此类过程的潜力和应用示例,并详细介绍适用的材料。它还将指出相应技术的优点和缺点。此外,本文还讨论了可用于生产微流控设备的非常规制造设备和社区项目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号