首页> 外文期刊>Analytical methods >Rapid fabrication of versatile omni-directional and long-distance three-dimensional flow paper-fluidic analytical devices using a cut-and-insert method for biomedical applications
【24h】

Rapid fabrication of versatile omni-directional and long-distance three-dimensional flow paper-fluidic analytical devices using a cut-and-insert method for biomedical applications

机译:使用切割和插入方法为生物医学应用快速制造通用的全向和长距离三维流纸流体分析设备

获取原文
           

摘要

Paper fluidics has recently offered an approach to precisely guide liquid flow in analytical devices with a low-cost regime. Multiple paper layers expand the capability of analytical devices to handle multiple samples as well as multiple detections simultaneously. Here we present a novel inexpensive cut-and-insert method to achieve a well-controlled even distribution of liquid in multi-channel three-dimensional (3D) paper-based analytical devices. A novel vacuum-driven poly dimethyl siloxane (PDMS) stamping method to pattern hydrophobic barriers in the filter paper enables rapid fabrication and assembly of microfluidic paper-based analytical devices (μ-PADs). The cut-and-insert assembly method facilitates more efficient fluid transfer than conventional O2 plasma-assisted overlapped channel binding, due to the strong physical contact between connected layers. The liquid transfer starts from the center region where two inserted layers are overlapped, and thus the presented method enables consistent liquid transfer independent of the angles of connected fluidic paths. Consequently, the angles between the connected μ-PAD strips as well as the 3D distance for the fluid transfer can be freely adjusted as needed. Also, multiple strips can be easily connected in series or in parallel. For example, perpendicularly connected bended paper channels guide upward and then lateral liquid flows by capillary action. Three important assays, i.e. nitrite 0 to 2 ppm, pH 1 to 10, and glucose 0 to 0.22 molL?1, were successfully implemented and measured simultaneously using a device with four strips connected in parallel.
机译:纸流体技术最近提供了一种以低成本方案精确引导液体在分析设备中流动的方法。多层纸层扩展了分析设备同时处理多个样品和多个检测的能力。在这里,我们提出了一种新颖的廉价切割插入方法,以在多通道三维(3D)纸质分析设备中实现液体的良好控制的均匀分布。一种新颖的真空驱动的聚二甲基硅氧烷(PDMS)压印方法可以在滤纸中形成疏水性阻挡层的图案,从而可以快速制造和组装基于微流体纸的分析设​​备(μ-PAD)。与传统的O2等离子体辅助的重叠通道结合相比,插入插入式组装方法可促进更有效的流体传输,这是由于连接层之间的牢固物理接触。液体输送从两个插入层重叠的中心区域开始,因此,所提出的方法能够进行一致的液体输送,而与所连接的流体路径的角度无关。因此,可以根据需要自由调整连接的μ-PAD条之间的角度以及用于流体传输的3D距离。而且,可以轻松地将多个条带串联或并联连接。例如,垂直连接的弯曲纸通道向上引导,然后横向液体通过毛细作用流动。使用具有四个平行连接的试纸的装置,成功地成功进行了三个重要的测定,即亚硝酸盐0至2 ppm,pH 1至10和葡萄糖0至0.22 molL?1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号